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Моделювання процесу вібрації машин вимагає знання характеру диференціаль-
ного рівняння вібраційного руху. Проаналізовано лінійне та нелінійне диференціальні 
рівняння, які моделюють процес виникнення стійких та нестійких вібрацій у 
вібраційних системах. 

Modelling of oscillating processes requires one to know the character and properties of a 
differential equation for oscillating movement. This paper presents an analysis of the solutions 
for linear and nonlinear equations of oscillating movement aimed at solving oscillations in 
technological systems of vibrating machines. 

Problem definition. The application of a nonlinear oscillating system is demonstrated to be suitable 
for the analysis of vibrating machines for technological processing of mechanical parts. For the realisation 
it is necessary to assemble a mathematical apparatus suitable for modelling of this process. We attempt for 
this purpose a solution of a set of linear and nonlinear differential equations for an oscillating system. 

Analysis of solutions of equation ( )xuxtfxx ,,2 εω =+&& , where ( ) ( )tFuxtf x ωcos,, 0=  
A simple example of oscillating motion is provided by a solid object with weight m  which is deviated 
from its steady state position. According to Hooke’s Law, there is a force F (elastic) which acts on the 
deviated object which is proportional to the deviation x in the form of xkF 2−= , where 0, >kk is a 
characteristic constant. The object will move (oscillate) under the influence of this force. 
The equation in the form 

xkxm 2−=&&              (1) 

where m is the weight of the object and ( )txx = , 
dt
dxx =& , 

2

2

dt
xdx =&& , expresses the oscillatory motion on 

assumption that the gravitation forces and resistance of the environment are disregarded. 
When oscillating object is moving in the environment, which presents the moving object with 

resistance and the resistance is proportional to speed x& , thus the resistance is xq&− , where 0>q  is the 
constant of this proportion, Equation (1) expressing the movement of an oscillating object becomes 

02 =++ xkxqxm &&&                (2) 
Equation (2) above represents motion which is called an independent oscillation. 
After rearranging Equation (2) becomes  

0
2

=++ x
m
kx

m
qx &&&  

Let’s denote p
m
q 2=   and   2

2
ω=

m
k . Differential equation (2) can be then rewritten as  

02 2 =++ xxpx ω&&&                (3) 
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Equation (3) is a linear differential equation with constant coefficients and with the right side equal to zero.  
Its characteristic equation is 

02 22 =++ ωλλ p     (4) 

and its roots are 22
1 ωλ −+−= pp , 22

2 ωλ −−−= pp . 
Three scenarios are possible here 

a) The roots of Equation (4) are complex. Let’s denote 222 Ω−=−ωp , where 0>Ω . 
Equation (4) will have complex roots when  

022 <−ωp  
which is when  

mkq 2<  
In this scenario the roots of Equation (4) are 

Ω+−= ip1λ ,   Ω−−= ip2λ  
Then a general solution of differential Equation (2) is the function 

( )( ) ( )( )tpectpecx ptpt 22
2

22
1 sincos ωω −+−= −−  

or in the form of 
( ) ( )tectecx ptpt Ω+Ω= −− sincos 21 ,     (5) 

where 21 ,cc are real constants.  
Function (5) represents the position of oscillating point x in time. For the movement to occur, it is 

necessary that for constants 21 ,cc it holds that 0≠ic  at least for one 2,1=i . It is proven that the 
movement which occurs in this case has the following characteristic property: 

The oscillating object crosses the steady state position (null position) indefinite number of times 
over equal time interval 2T . This is called a ‘half-period of oscillation’, while time T is called a ‘period 
of oscillation’. 

Let’s substitute the following for constants 2,1, =ici  

αsin1 rc =  

αcos2 rc = , 
where 0>r . Then it becomes possible to rearrange Function (5) as follows 

( ) ( )( )trtrex pt Ωα+Ωα= − sincoscossin , 
from which  

( )α+Ω= − trex pt sin       (6) 
A graphical representation of this function for one particular example is shown in Fig. 1. 

 

Fig. 1. Graphical representation of function tex t 2sin2 −=  
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Function (6) has a trivial solution of 0=x  when α+Ωt  is an integer multiple of π , i.e. 
πα ktk =+Ω , where K,2,1,0=k  This means that oscillating object crosses the steady position infinite 

number of times in time kt . The time period between two subsequent crossings of the steady state position 
can be derived from the following equations 

( )πα 11 +=+Ω + ktk  

πα ntk =+Ω  
from which we can derive 

( ) π=−Ω + kk tt 1  
Hence for a half period of oscillation  

Ω
=−= +
π

kk ttT
12

 

As 

m
qpp

2
,222 =−=Ω ω , 

then 

22222 4
22

qm
m

p
T

−
=

−
=

ω

π

ω

π
. 

ParameterΩ  represents circular frequency of the observed motion. Such a motion, for which the 
object crosses the steady state position at least twice, we call ‘oscillatory motion’, otherwise we refer to 
‘non-oscillatory’ or ‘non-vibrating’ motion. 

b) The second scenario for the characteristic Equation (4), when the roots are both real and 
different, provides for a generic solution of differential Equation (2) in the form 

Rccececx tt ∈+= 2121 ,,21 λλ , 
22

1 ωλ −+−= pp , 22
2 ωλ −−−= pp , 

where 
022 >−ωp , 

as 
m
qp

2
= , then 222 4 mq ω>  and mq ω2> . 

In this case the object crosses the steady state position at most once, when 
0=x , 

i.e. equation  
021

21 =+ tt ecec λλ , 

when 2,1,0 =≠ ici , has at most one solution. In this case the type of motion is non-oscillatory (non-
vibrating). The corresponding graphical representation of this function for one particular example is shown 
in Fig. 2. 

c) The third scenario for the roots of characteristic Equation (2), when p−== 21 λλ , where  

022 =−ωp , i.e. 22 ω=p , ω=p , 0,0 >> pω . 

A generic solution of differential Equation (2) is a function  
ptpt tececx −− += 21 , 

( )21 tccex pt += −   or  ( )21 tccex t += −ω ,  
thus the motion is non-oscillatory. Its graphical representation for one particular example is shown in Fig. 3. 
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Fig. 2. Graphical representation of function tt eex −− += 2  
 

 

Fig. 3. Graphical representation of function tt teex −− +=  
 

By using the limit of 
∞→t
xlim  we will show that for all three scenarios with increasing ∞→t the 

deviation of x converges to 0, i.e. function ( )txx =  represents damped movement (damped vibration, 
damped non-oscillatory movement). 

If 0>p , i.e. 0>q the following relations hold: 

a) ( ) ( ) ( )( ) 0sincoslimlim 21 =Ω+Ω= −

∞→∞→
tctcetx pt

tt
, 

b) ( ) ( ) =+=
∞→∞→

tt

tt
ecectx 21

21limlim λλ 0lim
2222

21 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠
⎞⎜

⎝
⎛ −−−⎟

⎠
⎞⎜

⎝
⎛ −+−

∞→

tpptpp

t
ecec

ωω
,  

where 0,0 2222 <−−−<−+− ωω pppp , 

c) ( ) ( ) 0limlim 21 =+= −−

∞→∞→

ptpt

tt
tecectx . 

If there is no resistance from environment, i.e. when 0=q , thus 0=p . The movement can be 
described by the equation 

xxm 2ω−=&&  
or  

02 =+ xxm ω&& , 

0
2

=+ x
m

x ω
&& . 
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If we consider a unit weight (m = 1) then we will analyse only a simplified equation 
02 =+ xx ω&& . 

If there is an external force ( )tP , which is only a function of time t  and which acts on a moving 
system, thus the resulting motion is described by the following differential equation 

( )tPxkxqxm =++ 2&&&       (7) 
and this is an equation of internal oscillation. 

One of the simplest forms of this function is ( ) ( ) 0,cos0 >= ωω tFtP , i.e. function ( )tP  is 
periodic. 

Non-linear second order differential equation. Let’s consider the solution properties of the 
following differential equation 

( ) ( ) ( ) ( )uxxxtduxxKxxBxtM ,,,, ′′′+=+′′+′′ ,    (8) 

where ( ) 0≠tM , ( )txx = , ( )tuu = , ( ) ( ) uxtftP == ,,ε are continuous functions. 
It is possible to express Equation (8) using a system of differential equations 

( ) ( )txtx 21 =′  

( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )tM
utx

tM
txBtx

tM
txKtx +−−=′ 2

2
1

1
2 ,    (9) 

( ) xtxx == 11 , ( ) xtxx ′== 22 . 

Let ( ) ( ) ( )( )Ttxtxtx 21 ,= is a general solution of System (9). For each solution ( )tx , ( ) 0
101 xtx = , 

( ) 0
202 xtx = , Jt ∈0  we assume that it exists within interval J . Let’s denote the right boundary position 

of interval J as 00 >> th , thus 0J = )ht ,0 . 

Let’s in Equation (8) set ( ) 02 =xB , ( ) 0=tu , then differential Equation (8) is expressed by the 
following system 

21 xx =′  

( )
( ) 1

1
2 x

tM
xKx −=′ ,     (10) 

where 
( )
( ) ( ) ( )RRJDCRDC
tM

xK ,, 2
00

1 ×≡=∈− . 

a 1 ) Let’s assume System (10) such that ( ) 01 =xK , then all solutions of ( ) 0, Jttx ∈  of System (10) 

are so that ( ) ctx =2 , Rc∈  is a constant and ( ) ( ) Rcttctx ∈−= ,01 . For 0=c , ( )tx  becomes 2-trivial 
solution and 1-constant solution. 

a 2 ) Let’s assume System (10) such that ( ) 01 ≠xK . 

Let for each non-trivial solution ( ) 0, Jttx ∈ of System (10) exist a function ( ) 0>tr and function 

( )tu  such that ( ) ( ) ( ) 0,,1 ≠∈ tuRJCtu , where ( )RJC ,1  is a space of real functions which can be derived 
and these functions are of one real variable t defined over the interval J. Let the following hold for 
solutions ( ) 2,1,, 0 =∈ iJttxi  

( ) ( ) ( )tvtrtx cos1 =  

( ) ( ) ( )tvtrtx sin2 =      (11) 

Function ( )tr  is called a polar function and function ( )tv  is called an angular function. System (10) 
is expressed using equations (11) in the form 

( ) ( ) ( ) ( ) ( )tvtvtrtvtr ′−′ sincos = ( ) ( )tvtr sin  
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( ) ( ) ( ) ( ) ( )tvtvtrtvtr ′+′ cossin =
( ) ( )( )
( ) ( ) ( )tvtr
tM

tvtrtK coscos,
−      (12) 

After rearranging System (12) we derive equations 
( )
( ) =
′
tr
tr

 ( ) ( )tvtv cossin ( ) ( )( )
( ) ( ) ( )tvtv
tM

tvtrtK sincoscos,
−    (13) 

( ) =′ tv ( )( ) −− 2sin tv ( ) ( )( )
( ) ( )( )2coscos, tv
tM

tvtrtK
, ( ) ( ) Zkktv ∈+≠ ,

2
12 π

 is an integer. 

For reasons of brevity we denote 2,1, =iI i  integrals as follows  

( ) ( ) ( ) ( )( )
( ) ( ) ( )∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

h

t

dttyty
tM

tytrtKtytyI
0

cossincos,cossin1  

( )( ) ( ) ( )( )
( ) ( )( )∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

h

t

dtty
tM

tytrtKtyI
0

22
2 coscos,sin , ( ) ( ) Zkktv ∈+≠ ,

2
12 π

,              (14) 

where ( )ty , 0Jt ∈  denotes a continuous function.  

Let for all continuous functions ( ) 0, Jtty ∈  exist integrals 21, II  as defined in the following 

statements a) to f). Then all non-trivial solutions ( ) 0, Jttx ∈  of System (9) are:   

a) unbounded, when ±∞=∞= 21 , II , 

b) unbounded, when KII =∞= 21 , , where RK ∈  is a constant, ( ) ZkktuK ∈≠+ ,
20
π is an 

integer, 
c) bounded so that ( ) 01 →tx , when ±∞=−∞= 21 , II , 
d) bounded so that ( ) 01 →tx , when KII =−∞= 21 , , where RK ∈  is a constant, 

( ) ZkktuK ∈≠+ ,
20
π  is an integer, 

e) bounded, when ±∞=>= 21 ,0, ILLI , 

f) bounded, when KILLI =>= 21 ,0, , RK ∈  is a constant, ( ) ZkktuK ∈≠+ ,
20
π  is an 

integer. 
Integrating System (13) over the interval ht ,0  yields 

( ) ( )0trhr = exp ( ) ( ) ( ) ( )( )
( ) ( ) ( )∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

h

t

dttyty
tM

tytrtKtyty
0

cossincos,cossin  

( ) =hv ( ) ( )( ) ( ) ( )( )
( ) ( )( )∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+

h

t

dtty
tM

tytrtKtytv
0

22
0 coscos,sin    (15) 

Considering the assumption that a certain value of ( )hr  exists such that ( ) 0>hr  ( )( )∞→hr , i.e. 

if a polar function ( )tr  is bounded (unbounded), then each non-trivial solution ( ) 0, Jttx ∈ of System (9) is 

bounded (unbounded). The situation when ( ) 01 →tx , ( ) 02 →tx  occurs exactly when −∞=1I  or if 

( ) 0=hr . 
In our future work we will consider Equation (8) in the following scenarios: 
1. when function ( )tP  has values ( ) ( )xuxtftP ,,ε= ; 
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2. when there is no resistance from environment, i.e. for 0=q , thus 0=p , i.e. the movement is 

described by equation xxm 2ω−=&& or  
02 =+ xxm ω&&  

0
2

=+ x
m

x ω
&& . 

If we consider a unit weight (m = 1) then we will analyse only a simplified equation 
02 =+ xx ω&& . 

Conclusions. In the first part of this paper, we have analysed a linear differential equation of an 
oscillating movement. In the following paper we will continue explore the solutions of its non-linear 
alternative. 

1. Kursweil J. Obyčajné diferenciálne rovnice. – Praha, 1978. 2. Pontrjagin, L.S. Prostyje 
differencialnie urovnenija. – Moscow, 1982. 3. Stocko Z. Mathematical Design of Vibratory-Centrifugal 
Hardening of Surface of Cylindric. 4. Long-Sized Machine Parts. In:Conference: New ways in 
manufacturing technologies. – 2006, Prešov 22–23.6.2006. – S. 472–477. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


