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KpunTorpagis Ha ocHOBi eJiNTUYHMX KPMBHX 3a0e3neuyye HalOiIbIIMii 3axucT cepen
BiloMHX cucTeM 3 BiiKpuTuM KJtoyeM. IlepeBaru BHKOPUCTAHHA MATEeHbKOI0 KJIK04a PpOOUTH
KpunTorpagiloc Ha OCHOBi eJiNTHYHMX KPUBHUX NPHBAOIUBOI0, OCKIILKM BOHAa BHMArae
MeHIIOI mamM’ATi i MeHIIMX oO0YMCIIOBAJLHUX PpecypciB. IIpomoHyeTbess NOMHOXKYBa4
eJIEMEHTIB CKiHYe€HHOT0 M0JIsl, AKHH € HAWT0JIOBHIIIUM i HAHOLIbII CIOKUBAIOYHM €JIeMEHTOM
KpHUIITONPOLEecopa, MPONOHYETHC HOBA CTPYKTYpPa MOMHOKYBaya i3 3MiHHMH PO3PAAHICTIO
BUXITHUX pe3yJbTaTiB i KiikicTioO onepaniiinux mukiaiB. KiibkicTs BUXifHux 0iTiB Mo:ke 0yTH
JAOBUIbHO 00paHa B HOBill apXiTeKTypi 3a/1eKHO BiJ CHiBBiIHOIIEHHA «amapaTHi pecypcu —
NPOAYKTHUBHICTH». Po3rasinarorbess apudgMeTH4YHi NMPHCTPOi, 110 BHKOPUCTOBYIOTH MOMHO-
’KyBadi 3 pi3HOI0 PO3PSIAHICTIO, MOPIBHIOETHCA iX po00Ta, amapaTHi BUTPATH i epeKTUBHICTH
peanizauii Ha kpucraji. IlepeBarm HOBOI CTPYKTYypH ilIOCTpylOThecsi Ha mnpukiaaai 521-
PO3PAAHOTO KPUNITONPOLeCcOpa, AKM BUKOPUCTOBYE HOPMAJIbHUI 0a3uc A MpeacTaBieHHS
esiemenTis nosusi GF(2°").

ECC (elliptic curve cryptography) offers the highest security per bit among the known
public key systems. The benefit of smaller key size makes ECC particularly attractive for
embedded applications since its implementation requires less memory and processing power
consumption. For a finite field multiplier which is the most important and the most area-
consuming unit, a new multiplier structure with scalable output sizes and operation cycles is
proposed. The number of output bits can be freely chosen in the new architecture with the
performance-area trade-off depending on the application. Arithmetic units using multipliers
with various operation bits will be synthesized, and their performance, area, and
implementation efficiency will be compared. Through the use of an optimal arithmetic unit, a
521-bit ECC processor based on the normal basis representation will be designed and
synthesized in GF(2**").

Introduction. Electronic security has been of considerable interest in recent years because of the
increase in electronic transactions — especially money and bank transactions. The developing technology
requires a longer key length to satisfy higher levels of security. However, as the key length becomes
longer, the operation time increases even more, as does the design complexity and area. Hence, a
cryptography algorithm with a short key length and a satisfactory security level is desired.

The operation of ECC is based on the arithmetic of a finite field. The most frequently used finite-
field arithmetic operations in ECC are addition and multiplication. In Galois field of 2™, addition and
subtraction of a finite field are bitwise XOR operations, regardless of the representation. The calculation
process and the complexity of implementation of the finite-field multiplication depend on the basis
representation. The field inversion operation will be performed by iterative multiplications.

The finite-field operation can be performed based on a polynomial-basis representation or a normal-
basis representation. The structures of multipliers based on a polynomial-basis representation are easy to
extend while the inversion operation is quite complex. Arithmetic units based on a normal-basis
representation are adequate because the square and the inverse operation are quite easy to implement.

References observation. Elliptic curve cryptography (ECC) offers the highest security per bit
among the known public key cryptosystems [1]. As a proof, the RSA system with a 1024-bit key has a
security level similar to that of an ECC system with a 160-bit key [2]. The benefit of smaller key sizes
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makes ECC particularly attractive for embedded, mobile applications since its implementation requires less
memory and processing power [1]. The elliptic curve cryptosystem with a 160-bit modulus is expected to
be secure for, at least, the next 5 years [3]. We expect the elliptic curve cryptosystem with a 521-bit
modulus to be secure for the next 25 to 30 years.

Arithmetic units based on a normal-basis representation are adequate because the square and the
inverse operation are quite easy to implement [4].

Three types of multipliers exist: the parallel input and serial output of Massey and Omura [5], the
serial input and parallel output of Feng [6], and the parallel input and parallel output of Wang [7].

Problem. The first and the second multiplier types take m cycles to obtain the result for an m-bit
operation. The last one takes only one clock cycle to obtain the result, but it needs more than m-times the
area than the others. Therefore, the choice depends on either the cost or the clock cycles. Since a field
multiplier is a crucial unit in an ECC processor (ECCP), a new multiplier structure whose performance can
be chosen freely is necessary.

Purpose of the work. In this paper, we want to propose a new scalable multiplier structure based on
Massey-Omura (M-O) multiplier. For large m, the serial multiplier and the parallel multiplier may not meet
either the timing or the area constraints. If the problem is to be solved, a new multiplier structure is needed
so that the performance and the area can be adjusted to meet the constraints.

Scalable Multiplier Based on a Normal Basis. Structure of scalable multiplier with n = 16 in
GF(2*") is shown in Fig. 1.
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Fig. 1. Structure of Scalable Multiplier with n = 16 in GF(2"!)
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A normal basis for GF(2m) is a set of the form:
¢ g(m-2)
&, ..., % o} €))
The representation of GF(2m) via the normal basis is carried out by interpreting the bit string as the
element:

A= ao"‘:' + al""cz1 + az’”‘:z + ...t ang o3 . 2)
Equation (2) can be rewritten in the bit string as:
A = (apa1a;....am1). 3)
In the normal basis representation, A” is a cyclic shift of A:
A’ =ay, o ao"‘zi + al‘":z +...+ am_z'x:md 4)

Let A and B be two elements of GF(2™) in a normal basis representation and C be their product.

A =(aoa;...am1), B = (bgby...bn.1), C = (coC1...Cm1). (5)
The last term c,.; of the product C is a binary function (f-function) of the coefficients of A and B.
Cm1 =f(ao, a1, a2, ..., @m.1; bo, by, by, ..., b))
Cm2 = f(am-1, A0, A1, ..., @m2; Om.1, Do, b1, ..., Do)
. (6)
co=fay, as, ..., am.1, 0; b1, by, ..., b1, Do)
Equation (6) can be rewritten by using an integer n, such that: 1 <n<m.
(Cmets -+ es Cmen) = (flA0, -+v» @mot; Doy <-vy Bimet)s » A@mantts «--» Amen Dmentls « -5 Dimen))
(Comncts «-+5 Cman) = (f@mns -+ -5 Qmen-1s Dy -+ Omnct)s -+ o5 A@m2nt1s «-+»> @m2n) Dm2n+1s ---» Dman))

(Cm—kn—]s «ov5 €0, Cm-1y oeey Cm-n+r) = (f(am-kns <5 Am-1, A0 +-v5 Amkn-15 bm-kn: ceey bm-l: b(), eees bm-kn-l): [EXT}
f(am—n+r+]s ey am—]s aOs eeey am—n+r; bm—n+r+ls ey bm—ls b(], ey bm—n+r)) (7)

Design of Arithmetic Unit Based on The Normal Basis in GF(2**"). An arithmetic unit performs
finite-field operations such as addition, multiplication, squaring and inversion and greatly affects the
performance of a crypto-processor. The scalable multiplier can be used for finite-field multiplication. The
trinomial that is recommended in IEEE 1363-2000 [8] for a generator polynomial is given by:

flx)= x50 4+ x15 41 (8)
An arithmetic unit can be constructed by adding an adder and a few multiplexers and by modifying
the control unit of an inversion unit. A block diagram of the proposed arithmetic unit is shown in fig. 2.

Elliptic Curve Cryptography Operation and Design. The final operation performed in an ECCP is
the elliptic curve point multiplication. Let a and b be the coefficients of a given elliptic curve E, y* +xy =
=x’+ax’ + b, and Py = (X0, o), P1 = (X1, V1), P2 = (X2, ¥2) be points of that given elliptic curve. The point
addition (P, = Py + P;) and the point doubling (P, = 2P)) are performed as follow:

Point Addition: z= (yo + y1)/(Xo + X1);

Xo=Z FZ+ Xt X Ta; Y =2(X T X)) F Xty

Point Doubling: z= x; +(yi/x));

X, =7 +z+a;y,=2(X; + X2) T X5 + y1.

The hierarchy of ECC operations is shown in the Fig. 3.

The ECCP is organized with four parts: an input and output processing unit (IOPU), a control unit
(CU), a register file (RF), and an arithmetic unit (AU).

The IOPU controls the input and the output. The multiplication factor “k” is transferred to CU upon
request for the point multiplication operation, and other data are transferred to the RF, which can receive
input data while it transmits a calculated result. The IOPU also generates status signals, “Ready”, “Done”,
and “TxReq”. The meaning of the status signals are summarized in the table 1.
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Fig. 2. Block diagram of a 521-bit arithmetic unit in a normal basis representation
Table 1
Summary of status/request signals of the proposed ECCP.
Signal Meaning
Ready The processor is ready to receive input data when the signal is active. The input data are stored in the
(out) input buffer and wait for calculation.
Done The processor has a calculated result in the output buffer and is ready to transmit data when the
(out) signal is active.
TxReq The processor transmits data to a host when the signal is active. It is valid only when the “Done”
(in) signal is active.

The CU decodes the instructions and controls the other units according to the sequence of finite-field
operations. The CU polls the IOPU if the data are ready and the output buffer is empty. It controls the data
transfer between the IOPU and the RF and between the RF and the AU. It also issues operation commands

to the AU to perform field operations. The instructions are summarized in table 2.

Point Multiplication

Point Addition

Point Doubling

Field Addition

Field Addition

Filed Squaring

Field Inverse

Fig. 3. Hierarchical diagram of ECC operations
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Table 2
List of the instructions performed by the ECCP

Instruction Action

FADD Field Addition
FMUL Field Multiplication
FINV Field Inversion
FSQR Field Squaring
ECA Point Addition
ECD Point Doubling
ECM Point Multiplication

The RF consists of eight 521-bit registers which store internal data which are used by the AU. The
AU performs finite-field operation such as addition, multiplication, squaring, and inversion. A block
diagram of the proposed ECCP is shown in Fig 4.
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Fig. 4:Block diagram of the proposed ECCP structure

Conclusion. In this paper a scalable finite-field multiplier structure for the ECC operation based
on the normal-basis representation over GF(2°*') is proposed. The number of output bits of the
multiplier can be freely chosen in the new architecture with the performance area trade-off depending
on the application.
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