Висновки

Розроблена модель у вигляді "вхід – вихід" має низький порядок при порівняно високій точності відображення поведінки зовнішніх змінних. Похибка цієї макромоделі становить ~6 %, що дає змогу використовувати її під час розрахунку як компонент, так і складних систем, куди модельований об'єкт входить як складова частина.

Запропонований у статті підхід полягає в розбитті побудови на етапи шляхом введення уточнювальної підмоделі, є універсальним і його можна ефективно застосовувати для макромоделювання складних нелінійних об'єктів у межах оптимізаційного підходу до побудови макромоделей.

1. Васьковський Ю.М Математичне моделювання електромеханічних перетворювачів енергії. – К.: НТУУ "КПІ". 2003. 2. Стахів П.Г., Ткачук В.І., Козак Ю.Я. Автоматизація побудови макромоделей електромеханічних компонент електротехнічних систем // Технічна електродинаміка. – К.: НТУУ "КПІ". 3. Козак Ю.Я. Модифікація методу направляючого конуса Растригіна // Электроника и связь: Тем. вып. Проблемы физической и биомедицинской электроники. – 1997. 4. Панченко А.М. Моделювання перехідних процесів енергетичних систем. – Харків, 2008. 5. Чуа Л.О., Пен-Мин Лин. Машинный анализ электронных схем: Пер. с англ. – М. Энергия, 1980.

УДК 621.313.333

А.С. Куцик, М.Б. Семенюк, В.Д.Йовбак Національний університет "Львівська політехніка", кафедра ЕАП, Свалявський технічний коледж НУХТ

ЗАСТОСУВАННЯ МЕТОДУ СЕРЕДНЬОКРОКОВИХ НАПРУГ ДЛЯ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ЕЛЕКТРОМЕХАНІЧНИХ СИСТЕМ З СИНХРОННОЮ МАШИНОЮ

© Куцик А.С., Семенюк М.Б., Йовбак В.Д., 2010

Наведено математичну модель синхронної машини, а також загальні принципи математичного моделювання електромеханічних систем з застосуванням методу середньокрокових напруг. Порівняно результати, отримані з застосуванням різних методів математичного моделювання.

The article presents mathematical model of electromechanical system with synchronous machine and research results of comparing of different mathematical methods.

Постановка проблеми. Аналіз останніх досліджень

Галузь застосування математичних моделей постійно розширюється. Сьогодні математичні моделі використовують не лише для досліджень, а й, значною мірою, для керування складними об'єктами і процесами, а також для розв'язання задач діагностування систем керування. В останньому випадку до математичних моделей та їх комп'ютерної реалізації висувають підвищені вимоги щодо швидкодії та числової стійкості для забезпечення тривалої роботи в реальному масштабі часу.

У зв'язку з цим, виникає необхідність у розробленні і використанні нових методів математичного моделювання для створення математичних та цифрових моделей електромеханічних систем (ЕМС) з високою повнотою опису елементів (для забезпечення адекватності в широкому

діапазоні режимів роботи) і, одночасно, з високою швидкодією та числовою стійкістю розрахунку для тривалої роботи в реальному масштабі часу.

У роботі [1] було запропоновано числовий однокроковий метод середньокрокових напруг для математичного моделювання електромеханічних систем, особливістю якого є забезпечення високої точності розрахунку і числової стійкості під час збільшення кроку числового інтегрування. У роботі [2] на прикладі моделювання асинхронного електроприводу показані зазначені вище переваги цього методу порівняно з широковживаним методом чисельного інтегрування Рунге-Кутта. Очевидно, що широке застосування нового методу для задач математичного моделювання електромеханічних систем вимагає перевірки та обґрунтування його ефективності порівняно з іншими відомими методами.

Завданням дослідження

Завданням дослідження є перевірка ефективності методу середньокрокових напруг порівняно з іншими методами для розв'язання задач математичного моделювання електромеханічних систем з синхронною машиною (СМ).

Математична модель синхронної машини

Згідно з методом середньокрокових напруг [1] рівняння електричної вітки, що містить джерело ЕРС, індуктивність, ємність та активний опір, записується у вигляді

$$\frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} (u + e - u_R - u_C - u_L) dt = 0, \qquad (1)$$

де u, e, u_R, u_C, u_L – миттєві значення напруги між вузлами, EPC, напруг на активному опорі, ідеальному конденсаторі та індуктивності, t_0 – значення часу на початку кроку інтегрування, Δt – крок числового інтегрування.

На основі (1) в роботі [1] виведено рівняння для вітки, невідомими якого є струм вітки в кінці кроку інтегрування і₁ і середня на кроці (середньокрокова) міжвузлова напруга вітки U:

$$U + E - u_{R0} - u_{C0} + \left(\frac{R}{m+1} + \frac{\Delta t}{C} \cdot \frac{2 - (m+1)(m+2)}{2(m+1)(m+2)} + \frac{L_0}{\Delta t}\right) i_0 - \sum_{k=1}^{m-1} \left(\frac{R\Delta t^k}{(k+1)!} \cdot \frac{m-k}{m+1} + \frac{\Delta t^{k+1}}{C(k+2)!} \cdot \frac{(m+1)(m+2) - (k+1)(k+2)}{(m+1)(m+2)}\right) \frac{d^{(k)}i_0}{dt^{(k)}} - \left(\frac{R}{m+1} + \frac{\Delta t}{C(m+1)(m+2)} + \frac{L_1}{\Delta t}\right) i_1 = 0,$$
(2)

де u_{R0} , u_{C0} – значення напруги на активному опорі та конденсаторі на початку кроку інтегрування; L_0 , L_1 – індуктивність вітки на початку та в кінці кроку, т – порядок полінома, яким описується крива струму на кроці інтегрування, $U = \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} udt$, $E = \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} dt$

середньокрокові міжвузлова напруга вітки та ЕРС.

Розрахункову схему синхронної машини як восьмиполюсника згідно з підходом, реалізованим в теорії моделювання електромашинно-вентильних систем [3], показано на рис. 1. Демпферна обмотка синхронної машини зображена двома короткозамкненими індуктивностями, зорієнтованими по осях d і q синхронної машини.

Рис. 1. Розрахункова схема СМ

$$\frac{1}{\Delta t} \int_{t_0}^{t_0+\Delta t} \vec{\phi}^{I} dt - \frac{1}{\Delta t} \int_{t_0}^{t_0+\Delta t} \vec{\phi}^{II} dt - \breve{R}_{ee} \vec{i}_{ee0} + \frac{\breve{R}_{ee}}{m+1} \vec{i}_{ee0} - \sum_{k=1}^{m-l} \left(\frac{\breve{R}_{ee} \Delta t^k}{(k+1)!} \cdot \frac{m-k}{m+1} \right) \frac{d^{(k)} \vec{i}_{ee0}}{dt^{(k)}} - \frac{\breve{R}_{ee}}{m+1} \vec{i}_{ee1} - \frac{1}{\Delta t} (\vec{\psi}_{ee1} - \vec{\psi}_{ee0}) = 0.$$
(3)

Для кіл ротора (внутрішніх кіл) аналогічно запишемо

$$\ddot{\mathbf{R}}_{ii}\vec{\mathbf{i}}_{ii0} - \frac{\breve{\mathbf{R}}_{ii}}{m+1}\vec{\mathbf{i}}_{ii0} + \sum_{k=1}^{m-1} \left(\frac{\breve{\mathbf{R}}_{ii}\Delta t^{k}}{(k+1)!} \cdot \frac{m-k}{m+1} \right) \frac{d^{(k)}\dot{\mathbf{i}}_{ii0}}{dt^{(k)}} + \frac{\breve{\mathbf{R}}_{ii}}{m+1}\vec{\mathbf{i}}_{ii1} + \frac{1}{\Delta t} \left(\vec{\psi}_{ii1} - \vec{\psi}_{ii0} \right) = 0 ,$$
(4)

де $\vec{\phi}^{I} = (\phi_{A1}, \phi_{B1}, \phi_{C1}, \phi_{f1})^{T}$, $\vec{\phi}^{II} = (\phi_{A2}, \phi_{B2}, \phi_{C2}, \phi_{f2})^{T}$ – вектори потенціалів зовнішніх полюсів; $\vec{i}_{ee} = (i_A, i_B, i_C, i_f)^{T}$, $\vec{i}_{ii} = (i_D, i_Q)^{T}$ – струми зовнішніх і внутрішніх кіл; $\vec{\Psi}_{ee} = (\Psi_A, \Psi_B, \Psi_C, \Psi_f)^{T}$ $\vec{\Psi}_{ii} = (\Psi_D, \Psi_Q)^{T}$ – вектори потокозчеплень; $\vec{R}_{ee} = diag(r_A, r_B, r_C, r_f)$ – матриця активних опорів обмоток статора і збудження; $\vec{R}_{ii} = diag(r_D, r_Q)$ – матриця активних опорів демпферних обмоток. Індекси 0 і 1 означають значення змінної на початку та в кінці кроку числового інтегрування, m – порядок полінома, яким описується зміна струму на кроці.

Зміна потокозчеплень зовнішніх та внутрішніх кіл синхронної машини на кроці дорівнюватиме:

$$\vec{\Psi}_{ee1} - \vec{\Psi}_{ee0} = \vec{L}_{ee1} \cdot \vec{i}_{ee1} + \vec{L}_{ei1} \cdot \vec{i}_{ii1} - \vec{L}_{ee0} \cdot \vec{i}_{ee0} - \vec{L}_{ei0} \cdot \vec{i}_{ii0}, \qquad (5)$$

$$\vec{\psi}_{ii1} - \vec{\psi}_{ii0} = \vec{L}_{ii} \cdot \vec{i}_{ii1} + \vec{L}_{ie1} \cdot \vec{i}_{ee1} - \vec{L}_{ii} \cdot \vec{i}_{ii0} - \vec{L}_{ie0} \cdot \vec{i}_{ee0} , \qquad (6)$$

де \vec{L}_{ee} – матриця власних та взаємних індуктивностей зовнішніх кіл, $\vec{L}_{ei}, \vec{L}_{ie}$ – матриці взаємних індуктивностей між зовнішніми і внутрішніми колами; $\vec{L}_{ii} = \text{diag}(L_{DD}, L_{QQ})$ – матриця власних індуктивностей внутрішніх кіл (демпферної системи ротора).

$$\breve{L}_{ee} = \begin{bmatrix} L_{AA} & L_{AB} & L_{AC} & L_{Af} \\ L_{BA} & L_{BB} & L_{BC} & L_{Bf} \\ L_{CA} & L_{CB} & L_{CC} & L_{Cf} \\ L_{fA} & L_{fB} & L_{fC} & L_{ff} \end{bmatrix} \\ \breve{L}_{ei} = \begin{bmatrix} L_{AD} & L_{AQ} \\ L_{BD} & L_{BQ} \\ L_{CD} & L_{CQ} \\ L_{fD} & L_{fQ} \end{bmatrix} \\ \breve{L}_{ie} = \begin{bmatrix} L_{DA}L_{DB}L_{DC}L_{Df} \\ L_{QA}L_{QB}L_{QC}L_{Qf} \end{bmatrix}$$

У матриці \vec{L}_{ee} діагональні елементи L_{AA} , L_{BB} , L_{CC} , L_{ff} – власні індуктивності фазних обмоток і обмотки збудження, а всі інші – взаємні індуктивності відповідних обмоток. Ці індуктивності розраховуються на основі електромагнітних параметрів СМ та кута повороту ротора.

Вирази (5) і (6) враховують зміну на кроці потокозчеплень зовнішніх і внутрішніх кіл, обумовлену зміною на кроці струмів цих кіл (\vec{i}_{ee} та \vec{i}_{ii}), а також зміною електромагнітних параметрів СМ внаслідок обертання ротора (зміну матриць індуктивностей \vec{L}_{ee} , \vec{L}_{ei} , \vec{L}_{ie}).

У разі врахування нелінійності характеристики магнітопроводу індуктивність реакції якоря явнополюсної синхронної машини по осі d L_{ad} є функцією (задається таблично за кривою намагнічення) струму намагнічення, який визначається з виразу

$$i_{\mu} = \frac{2}{3} [i_{A} \cos(\gamma) + i_{B} \cos(\gamma - \rho) + i_{C} \cos(\gamma - 2\rho)] + \frac{i_{f}}{k_{i}} + i_{D}$$

Система рівнянь (3), (4) після підстановки виразів з (5), (6) матиме вигляд

$$\frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{\phi}^{\mathrm{I}} dt - \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{\phi}^{\mathrm{II}} dt - \breve{R}_{ee} \vec{i}_{ee0} - \left(\frac{\breve{R}_{ee}}{m+1} + \frac{\breve{L}_{ee1}}{\Delta t}\right) \vec{i}_{ee1} + \left(\frac{\breve{R}_{ee}\Delta t}{m+1} + \frac{\breve{L}_{ee0}}{\Delta t}\right) \vec{i}_{ee0} - \frac{1}{\sum_{k=1}^{m-1} \left(\frac{\breve{R}_{ee}\Delta t}{(k+1)!} \cdot \frac{m-k}{m+1}\right) \frac{d^{(k)} \vec{i}_{ee0}}{dt^{(k)}} - \frac{1}{\Delta t} \breve{L}_{ei1} \vec{i}_{i11} + \frac{1}{\Delta t} \breve{L}_{ei0} \vec{i}_{i0} = 0$$
(7)

$$\vec{R}_{ii}\vec{i}_{ii0} - \left(\frac{\vec{R}_{ii}}{m+1} + \frac{\vec{L}_{ii}}{\Delta t}\right)\vec{i}_{ii0} + \left(\frac{\vec{R}_{ii}}{m+1} + \frac{\vec{L}_{ii}}{\Delta t}\right)\vec{i}_{ii1} + \sum_{k=1}^{m-1} \left(\frac{\vec{R}_{ii}\Delta t^{k}}{(k+1)!} \cdot \frac{m-k}{m+1}\right)\frac{d^{(k)}i_{ii0}}{dt^{(k)}} + \frac{1}{\Delta t}\vec{L}_{ie1}\vec{i}_{ee1} - \frac{1}{\Delta t}\vec{L}_{ie0}\vec{i}_{ee0} = 0 \quad (8)$$

3 рівняння (8) отримаємо вираз для визначення струмів внутрішніх контурів в кінці кроку

$$\vec{i}_{ii1} = \vec{R}_{ii}^{*-1} \left(-\vec{R}_{ii} \vec{i}_{ii0} - \sum_{k=1}^{m-1} \left(\frac{\vec{R}_{ii} \Delta t^{k}}{(k+1)!} \cdot \frac{m-k}{m+1} \right) \frac{d^{(k)} \vec{i}_{ii0}}{dt^{(k)}} + \vec{R}_{ii}^{*} \vec{i}_{ii0} - \frac{1}{\Delta t} \vec{L}_{ie1} \vec{i}_{ee1} + \frac{1}{\Delta t} \vec{L}_{ie0} \vec{i}_{ee0} \right)$$
(9)

де $\breve{R}_{ii}^* = \left(\frac{\breve{R}_{ii}}{m+1} + \frac{\breve{L}_{ii}}{\Delta t}\right)$ – матриця крокових опорів внутрішніх кіл.

Підставивши вираз (9) в (7), отримаємо

$$\frac{1}{\Delta t} \int_{t_0}^{t_0+\Delta t} \vec{\varphi}^{\rm I} dt - \frac{1}{\Delta t} \int_{t_0}^{t_0+\Delta t} \vec{\varphi}^{\rm II} dt - \vec{R} \vec{i}_{\rm eel} - E = 0, \qquad (10)$$

де

$$\begin{split} \vec{\mathsf{R}} &= \breve{\mathsf{R}}_{ee1}^* - \breve{\mathsf{R}}_{ii1}^{*-1} \frac{\breve{\mathsf{L}}_{ie1} \breve{\mathsf{L}}_{ei1}}{\Delta t^2} \,, \\ \vec{\mathsf{E}} &= \sum_{k=1}^{m-1} \left(\frac{\breve{\mathsf{R}}_{ee} \Delta t^k}{(k+1)!} \cdot \frac{m-k}{m+1} \right) \frac{d^{(k)} i_{ee0}}{dt^{(k)}} - \frac{\breve{\mathsf{L}}_{ei1} \breve{\mathsf{R}}_{ii}^{*-1}}{\Delta t} \sum_{k=1}^{m-1} \left(\frac{\breve{\mathsf{R}}_{ii} \Delta t^k}{(k+1)!} \cdot \frac{m-k}{m+1} \right) \frac{d^{(k)} i_{ii0}}{dt^{(k)}} + \left(\breve{\mathsf{R}}_{ee} - \breve{\mathsf{R}}_{ee0}^* + \frac{\breve{\mathsf{L}}_{ei1} \breve{\mathsf{R}}_{ii}^{*-1} \breve{\mathsf{L}}_{ie0}}{\Delta t^2} \right) \vec{\mathsf{I}}_{ee0} - \left(\frac{1}{\Delta t} \breve{\mathsf{L}}_{ei0} - \frac{1}{\Delta t} \breve{\mathsf{L}}_{ei1} + \frac{1}{\Delta t} \breve{\mathsf{L}}_{ei1} \breve{\mathsf{R}}_{ii1}^{*-1} \breve{\mathsf{R}}_{ii} \right) \vec{\mathsf{i}}_{ii0} - \end{split}$$

крокова EPC, яка визначається початковими умовами; $\breve{R}_{ee0}^* = \left(\frac{\breve{R}_{ee}}{m+1} + \frac{\breve{L}_{ee0}}{\Delta t}\right), \ \breve{R}_{ee1}^* = \left(\frac{\breve{R}_{ee}}{m+1} + \frac{\breve{L}_{ee1}}{\Delta t}\right) -$

матриці крокових опорів зовнішніх кіл на початку та наприкінці кроку.

Рівняння (10) дозволяє на основі значень струмів зовнішніх та внутрішніх контурів на початку кроку (\vec{i}_{ee0} та \vec{i}_{ii0}), середніх значень потенціалів зовнішніх полюсів на кроці та відомих електромагнітних параметрів обмоток СМ визначити струми зовнішніх та внутрішніх контурів наприкінці кроку.

Доповнимо рівняння (9) та (10) рівнянням механічного стану

$$J\frac{d\omega}{dt} = M + M_n \tag{11}$$

де М – електромагнітний момент машини, М_п – момент, прикладений до вала ротора, Ј – момент інерції ротора.

Математичну модель синхронної машини як багатополюсника подаємо отриманим з рівняння (10) зовнішнім інтегральним векторним рівнянням,

$$\vec{i}_{SCM} + \vec{G}_{SCM} \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{\phi}_{cM} dt + \vec{C}_{SCM} = 0, \qquad (12)$$

де $\vec{\phi}_{CM} = \left(\vec{\phi}^{I}, \vec{\phi}^{II}\right)^{T}$ – вектор потенціалів зовнішніх полюсів; $\vec{i}_{CM} = \left(\vec{i}_{ee}, -\vec{i}_{ee}\right)^{T}$ – вектор струмів зовнішніх віток; $\vec{G}_{SCM} = \begin{pmatrix} \breve{R}^{-1} & -\breve{R}^{-1} \\ -\breve{R}^{-1} & \breve{R}^{-1} \end{pmatrix}, \vec{C}_{SCM} = \begin{pmatrix} \breve{R}^{-1} \\ -\breve{R}^{-1} \end{pmatrix} \times \vec{E}$ – матриця коефіцієнтів та вектор вільних

членів.

Зовнішнє інтегральне векторне рівняння (12), внутрішнє рівняння (9) та рівняння механічного стану (11) формують математичну модель синхронної машини.

Принципи формування математичної моделі електромеханічної системи

Математична модель електромеханічної системи формується з моделей її типових елементів, які подають багатополюсниками і описують зовнішніми інтегральними векторними рівняннями вигляду (12). Під час формування моделей електромеханічних систем зовнішні вітки електричних багатополюсників з'єднуються між собою у вузлах ЕМС. Зв'язок між потенціалами зовнішніх полюсів багатополюсника $\vec{\phi}_e$ та потенціалами незалежних вузлів ЕМС $\vec{\phi}_c$, відповідно до [3], описується рівнянням

$$\vec{\varphi}_{e} = \vec{\Pi}^{T} \vec{\varphi}_{c},$$

або для середніх на кроці числового інтегрування значень цих потенціалів:

$$\frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{\phi}_e dt = \vec{\Pi}^T \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{\phi}_e dt , \qquad (13)$$

де П – матриця інциденції, яка визначає спосіб під'єднання зовнішніх віток елемента до незалежних вузлів ЕМВС.

Середнє на кроці числового інтегрування значення потенціалів незалежних вузлів ЕМС $\frac{1}{16} \int_{0}^{t_0+\Delta t} dt$ визианатимемо з такого ректорного зигебраїнного рівняння:

 $\frac{1}{\Delta t} \int_{t_0} \vec{\phi}_c dt$ визначатимемо з такого векторного алгебраїчного рівняння:

$$\breve{G}_{sc} \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} \vec{G}_{sc} dt + \breve{C}_{sc} = 0, \qquad (14)$$

коефіцієнти якого визначаються на основі коефіцієнтів зовнішніх векторних рівнянь вигляду (12) всіх елементів, що входять до складу ЕМВС, та їх матриць інциденцій за формулами: $\breve{G}_{sc} = \sum_{j=1}^{L} \breve{\Pi}_{j} \breve{G}_{sej} \breve{\Pi}_{j}^{T}$, $\breve{C}_{sc} = \sum_{j=1}^{L} \breve{\Pi}_{j} \breve{C}_{sej}$ (L – кількість елементів в складі ЕМВС).

Алгоритм математичного моделювання є таким. На основі коефіцієнтів зовнішніх векторних рівнянь вигляду (12) всіх структурних елементів, що входять до складу ЕМС, та їхніх матриць інциденцій формуємо рівняння (14), з якого визначаємо середні на кроці числового інтегрування значення потенціалів незалежних вузлів ЕМС. Для кожного структурного елемента ЕМВС з рівняння вигляду (13) визначаємо середні на кроці числового інтегрування значення потенціалів зовнішніх віток і з рівняння вигляду (12) – струми зовнішніх віток наприкінці кроку числового інтегрування. Змінні, які описують електричний багатополюсник і не є струмами зовнішніх віток (якщо такі є), визначаємо з внутрішніх рівнянь електричного багатополюсника.

У разі використання методу середньокрокових напруг другого порядку необхідною є інформація про перші похідні струмів зовнішніх віток елементів ЕМС. Для розрахунку цих похідних використовуємо принципи теорії математичного моделювання електромашиновентильних систем, описані в [3].

Результати дослідження

Дослідження проводилися для роботи синхронної машини в генераторному режимі на автономне активно-індуктивне навантаження. Збудження СМ здійснювалося від керованого джерела постійної напруги. Завданням проведених досліджень було порівняння результатів математичного моделювання з застосуванням методу середньокрокових напруг та відомих широковживаних методів числового інтегрування, зокрема, Рунге-Кутта другого порядку та Адамса четвертого порядку. Дослідження проводилися для основних режимів роботи СМ, а саме: початкове збудження та завантаження, причому під час завантаження з метою компенсації реакції якоря СМ збільшувалась напруга збудження СМ.

Параметри СМ, які використовували під час розрахунків: потужність 4,5 кВт, швидкість обертання 1500 об/хв, лінійна напруга статора 230 В, струм статора 11,3 А, опір обмотки збудження 2 Ом, струм збудження неробочого ходу 11,5 А, індуктивності: $L_d = 0.042$ Гн, $L_{ad} = 0.039$ Гн, $L_q = 0.035$ Гн, $L_{aq} = 0.033$ Гн, індуктивність розсіяння обмотки збудження (приведена до статора) $L_{\sigma f} = 0.01$ Гн.

На рис. 2 наведено результати розрахунку миттєвих значень струму статора i_{Γ} , фазної напруги статора u_{Γ} та струму збудження I_f CM, в режимах початкового збудження та завантаження (з одночасним збільшення напруги збудження), отримані для кроку числового інтегрування 0.0001 с (200 точок на період синусоїди). За такого кроку результати моделювання, отримані з використанням різних методів, є однакові. Ці результати можна вважати еталонними.

Рис. 2. Струм збудження (а), миттєві значення струму (б) і фазної напруги (в) статора СМ, розраховані з кроком числового інтегрування, що відповідає 200-м точкам на період

На рис. З показані результати розрахунку зазначених вище режимів, отримані з кроком числового інтегрування 0.0008 с (25 точок на період). Як видно з отриманих результатів, метод Адамса за такої величини кроку є непрацездатним; відмінності між результатами, отриманими методом середньокрокових напруг першого і другого порядку та еталонними, є незначні; метод Рунге-Кугта є працездатним, однак порівняно з методом середньокрокових напруг дає вищу похибку розрахунку, яка особливо проявляється у струмах демпферних контурів ротора в осях d, q (рис. 3, c, d). Зокрема, наявність похибки числового інтегрування, призводить до того, що розраховані струми демпферних контурів в усталеному режимі відмінні від 0, причому похибка розрахунку цих струмів в усталеному режимі залежить від величини активного опору демпферних контурів.

1 – еталонний розв'язок, 2 – для методу середньокрокових напруг першого порядку, 3 – для методу середньокрокових напруг другого порядку, 4 – метод Рунге-Кутта другого порядку, 5 – метод Адамса четвертого порядку У разі збільшення кроку числового інтегрування до величини, що відповідає 16 точкам на період метод Рунге-Кутта втрачає працездатність (втрачається числова стійкість), у той час як метод середньокрокових напруг забезпечує прийнятну точність (похибка до 8 %) навіть при кроках, що відповідають 5 точкам на період. Зауважимо, однак, що у разі розрахунку з таким кроком числового інтегрування, втрачається інформація про миттєві значення змінних статора генератора.

Висновки

Результати дослідження електромеханічної системи з синхронною машиною свідчать про переваги використання методу середньокрокових напруг з погляду швидкодії і стійкості розрахунку. Зокрема: під час використання методу числового інтегрування Адамса четвертого порядку значні (до 50 %) похибки розрахунку проявляються вже при кроках, що відповідають дискретності 25 точок за період; у разі використання методу Рунге-Кутта другого порядку значні похибки з'являються при кроках, що відповідають дискретності 16 точок за період; метод середньокрокових напруг забезпечує прийнятну (з похибкю до 8 %) точність розрахунку навіть при кроках, що відповідають дискретності 5 точок за період.

У разі розрахунку електромеханічної системи з синхронною машиною з кроком числового інтегрування, що відповідає дискретності 200 точок за період, всі розглянуті методи дають практично однаковий результат.

1. Плахтина О.Г. Числовий однокроковий метод аналізу електричних кіл і його застосування в задачах електромеханіки // Вісник НТУ «Харківський політехнічний інститут». – Харків: НТУ «ХПІ», 2008. – № 30. – С. 223–225. 2. Кузнєцов О.О. Математична модель асинхронного електроприводу зі збудженням потужністю ковзання / О.О. Кузнєцов // Вісник Нац. ун-ту "Львівська політехніка". – 2009. – № 653: Електроенергетичні та електромеханічні системи. – С. 109–113 3. Плахтына Е.Г. Математическое моделирование электромашинно-вентильных систем / Е.Г. Плахтына. – Л.: Вища шк., 1986. – 161 с.

УДК 621.311.2

Г.М. Лисяк, О.Р. Пастух, О.М. Равлик Національний університет "Львівська політехніка", кафедра ЕСМ

ПЕРЕХІДНІ ПРОЦЕСИ ПІД ЧАС ЗОВНІШНІХ КОРОТКИХ ЗАМИКАНЬ ЕНЕРГОБЛОКА З ДОДАТКОВИМ РОБОЧИМ ТРАНСФОРМАТОРОМ ВЛАСНИХ ПОТРЕБ

© Лисяк Г.М., Пастух О.Р., Равлик О.М., 2010

Проаналізовано зміну координат режиму енергоблока з турбогенератором ТГВ-200М та з додатковим робочим трансформатором власних потреб під час зовнішніх коротких замикань.

The analysis of varyjng performance parameters of power unit with turbogenerator TTB-200M consisting additional working auxiliary transformer under internal short circuits is carried out.

Постановка проблеми

Однією з важливих задач забезпечення надійного живлення електроприймачів власних потреб (ВП) електростанцій (ЕС) є розроблення нових схем електричної частини енергоблоків (ЕБ) та аналіз перехідних процесів під час їх аварійних режимів.