ADVANCESIN CYBER-PHYSICAL SYSTEMS

Vol. 1, No. 2, 2016

PROGRAM CODE PARALLELIZATION METHOD

Liubomyr Tsyhylyk

Lviv Polytechnic National University, 12, Bandera Sr., Lviv, 79013, Ukraine.
Authors e-mail: |.tsyhylyk@gmail.com

Submitted on 04.12.2016
© Tsyhylyk L., 2016

Abstract. Method of parallelism extraction from
sequential program is proposed. The definition of three-
address code is given. The requirements to the sequential
and parallel program are determined. The structure and
design performance of the parallel program are given. The
description of two stages of the parallelism extraction
method is proposed: stage of preliminary field initialization
and recursve stage of the paralld extraction. Evaluate
efficient of the parallelism extraction method based on an
example of FFT 64p.

Index Terms — parallelization, program parallelization,
method of program paralldization, parallel code structure,
tree-address program

[. INTRODUCTION

More than a dozen companies are engaged in
developing automated systems for design special devices
and processors [1]. To achieve flexibility in the design,
the minimum of effort for the design and performance of
such devices, the company developed a technology C to
HDL [1] [2] [3] [4]. The technology used for those tasks
where time for execution on universa processors
architecture is unacceptably high. These tasks include
processing biological data, modeling of physical
processes, financial forecasts and others. Embedded
systems that require high-performance computing or data
processing in real time also use this technol ogy.

C to HDL compilers should be used in large projects
or tasks which might need to change the algorithm in
future. Development of large projects solely on the HDL
code is a complex task that requires a lot of time to
design a system. Abstraction level of C code for such
projects significantly reduces design time, over-order
design written in HDL code, modify heavier compared
to the C language. If the engineer needs to add new
functionality to the existing system, he/she needs to
add/modify afew lines of C language code. For instance,
to perform the same task in HDL needs to modify/add
functional modules of the system, which require more
timeto develop.

A high-level synthesis system of specialized devices
“Chameleon” [4] [6] was developed using technology C
to HDL (hereinafter C2HDL). The aim of this system is
the generation of HDL code that performs the algorithm
presented in C with predetermined performance. The IP
core synthesis process consists of several stages [7]. An
intermediate stage is the generation of three-address

code program, which aims at submitting flow graph
algorithm for further processing.

For the maximum performance of any computer
system, it isnecessary to use the parallelism and the pipe
[8] [9]. These approaches will significantly reduce the
computation time. Given that the main purpose of the
system configuration is C2HDL productivity perfor-
mance computing, it is recommended to use ingructions
and data pipelining to goal achievement.

1. TASK

To develop a parale three-address application code
structure, create data pipelining stages and develop a
consistent method of three-address code parallelization.

1. SEQUENSIAL PROGRAM CODE STRUCTURE

One of the main characteristics of the system design is
reflected in C2HDL flow graph agorithm [10] from a
sequensial program code (three-address code). It is a
simple code structure to extract maximum of paralédiza-
tion and tracking dependencies between the commands.

We assume that three-address source program is a
sequence of commands describing algorithm where oneline
is represented by only one command tha should be
performed on two operands of data and the result of this
operation is assigned an another operand for example (2).

add R3 R2 R1 @
where add — mnemonic mark of adding command, R1
and R2 — operands of data for computation execution,
R3 — operand that stores result of command execution.

According to the main problems, facing the system
C2HDL, three-address code must meet the following
requirements:

» Contains only the algorithm description, reflects the
algorithm’s flow graph [10]. There is no index of the
array calculations.

» Loops, used in the C language, is fully unwound
and presented in a sequentia way.

» Three-address code consists of a set of operands
(regigers, R1, R2, ..), their number is unlimited, as
three-address code is an intermediate representation of
the algorithm and is not based on a predefined computer
architecture. One command may use the same name
operands:

add Rl RL R1)

132 Liubomyr Tsyhylyk

Table 1
List of the three-address commands
T | T
EIEE A
SI5E |88 « | F | BB
E |2 g E | E
> |5|E25 3§ E | g | 2| 2|k
#| B |88 t% gi? 5 5 | 2| 2|2 Command description
3 |8|8c8|25 g z | 5| % |8
5|56 °|¢E E S s = | 5 |C&
g/gs |88 = | & | & ¢
E|E 5 -
S(58 (@) @]
Z| 2
1 2 3 4 5 6 7 8 9 |10 11
1 w 0 y z in R1 - — | i | Input data loading from the externd port number # (port
koo number can be any natural number). Here“y” —isanumber
_g of conditional command on which the current command
2 depends, “Z' — the execution condition of the current
5 command. The In-command will be executed when the
o result of the conditional command “y” isequd to“Z".
2 'g 0 y z Id R1 k — | = | Congtant loading from internd memory. Where“K’ is
S integer constant. Also, it can be writtenin float point formet.
Example: 234.76543 or -0.000345
3| 2 0 y z out R1 - — | i | Givingoutput result usng external port #i
=%
S g
©)
4 0 y z add R3 R1 | R2 | — | Adding command execution between R1 and R2, thetest
resultiswrittenin R3
518 |o y z sub R3 | Rl | R2 | — | Subtracting command execution between R1 and R2, the
é test result iswrittenin R3
6 5 0 y z mul R3 | Rl | R2 | — | Multiplication command execution between R1 and R2, the
test result iswrittenin R3
718 [o] vy z div R3 | Rl | R2 | — | Divison command execution between R1 and R2, the test
2 result iswrittenin R3
8| S 0 y z adds R3 R1 | R2 | — | Adding command execution between R1 and R2, one bit
< shift right performed, thetest result iswritten in R3
9 0 y z subs R3 R1 | R2 | — | Subtracting command execution between R1 and R2, one
bit shift right performed, the test result iswrittenin R3
10 0 y z Ll R3 R1 | R2 | — | Shiftlogicleft R1 for R2 bits thetest result iswrittenin R3
11 0 y z s R3 | Rl | R2 | — | Shiftaithmeticleft R1 for R2 bits, thetest result iswritten
inR3
12| g 0 y z ar R3 R1 | R2 | — | Shiftlogicright R1 for R2 bits, thetedt result iswrittenin R3
13 é 0 y z sar R3 | Rl | R2 | — | Shiftaithmeticright R1for R2 bits, thetest result iswritten
inR3
14 5 0 y z and R3 | Rl | R2 | — | Logic‘and’ execution between R1 and R2, thetest result is
T writtenin R3
15/ |0 y z or R3 | Rl | R2 | —| Logic'or execution between R1 and R2, thetest resuit is
- writtenin R3
16 0 y z xor R3 | Rl | R2 | — | Logic‘xor execution between R1 and R2, thetest result is
writtenin R3
17 0 y z not R2 R1 — | — | Logic'nat’ execution with R1, thetest result iswrittenin R2
18 X y z cmpeq - R1 | R2 | — | ‘Equa’ operation execution between R1 and R2. Where
“X" —sequentid number of conditional command. The test
8 result is automatically stored on HW predefined register.
19 é X y z cmpneq - R1 | R2 | —| ‘Notegual’ operation execution between R1 and R2. The
5 test result is automatically stored on HW predefined register.
20 X y z cmpleq - Rl | R2 | — | ‘Lessorequa’ operation execution between R1 and R2. If
5 R1isless or equal to R2 that theresult is‘true'. The test
B result is automatically stored on HW predefined register.
21| 8 X y z cmpl - R1 | R2 | —| ‘Less operation execution between R1 and R2. If Rl isless
than R2 thet the result is* true'. Thetest result is autometically
stored on HW predefined register.

Program Code Parallelization Method

133

Tablei continuation

112 |3 4 5 6 7 8 9 |10 11

22 X y z cmpgreq Rl | R2 | — | ‘Greater or equal’ operation execution between R1 and R2.
If R1isgrester or equa to R2 that theresult is‘true’. The
test result is automatically stored on HW predefined
register.

23 X y z cmpgr - R1 | R2 | — | ‘Greater’ operation execution between R1and R2. If R1is
greater than R2 thet theresult is‘true. Thetest result is
automatically stored on HW predefined regigter.

24 g- 0 y z jmp @R1 | - — | =] “Jump’ operation. Command pointer jumpsto the address

- stored in @R1.
B|g |0 y z asggn R1 R2 — | — | Assign operation. Thevaue of theregister R2 isassgnto
'g:; the R1 register.

» Commands of loading input data and giving output

results should be composed in the following way:
com Rl n (3)

where, com — command of loading/giving data (in/out),
R1 - dataregister, n —port number (n | Z).

» Conditional command supporting [10].

» Containsthe following set of commands (Table 1).

Mathematical model of three-address code shows in
next way:
:'i' géxIO><y|O><z><comand><regdﬁ> o} (4)

Tg<regargl|const|A><regargz|A>< port|A>E'y
where xI N — conditional command number; yl N —
conditional command number that insant command
dependents; z{0 | 1} — condition of the ingant command
execution; command | COM — mnemonic mark of a
command, COM — set of the commands; regyesl REG —
the result register, REG — set of registers; regag! REG —
the first argument register; constl R — constant (fix and
float (IEEE 754) point supported); regael REG — the
second argument register; portl N — port number;
il N —sequentia number of the command line.

This mathematicadl model P describes any combi-
nation of the three-address program.

IV. PARALLEL CODE REQUIREMENTS

C2HDL system uses configurable architecture of
special processor [7] for high performance IP core
generation. The main advantage of this architecture to
compare with existing [8] [11] [12] [13] [14] [15] [16] is
its scalahility and “adaptation” to the input agorithm.
Under “adaptation” we should understand configuration
possibility of all unitsin that way to set desired system
performance with minimal HW resource usage. The next
pardle code requirements were elaborated during
analyzing particularity of the configurable architecture;

® The paralleization level of the sequential code
should depend definitely on the input algorithm
characterigtics.

* Pipdine usage between stages. input data loading,
output data extracting and perform calculations.

P

V. PARALLEL CODE STRUCTURE
AND CHARACTERISTIC

The next list refers to the main pardle code
characterigtic:

» Number of the parallel code branches for arithmetic
and logic operations execution.

» Command-loading level of each branch (the value
is determinates in percentage). This value has higher
priority than number of the parallel code branches set by
user. Thereafter if command-loading level is not reach at
least for one branch, the parallel branch number decrease
by one and repeat this procedure again.

» Theinput/output ports number.

» Stages count (paralldl lines) of the program.

Performance of any designed system is determined by
the combination of these entire characteristic (Fig. 1),
but the dominant role belongs to count of the parallel
code branches. This value shows how many paralld
arithmetical units (ALU) are used for program execution.
The higher this number is, the higher isprogram
paradldization and, accordingly, higher system perfor-
mance can be achieved. Taking into account that each
algorithm has its own parald level, thereafter the code-
loading level of each paralle branch can be different.
One branch of the parallel code is additional ALU. The
command-loading level is ratio of the commands that
should be executed in this ALU, to the total amount of
the parallel lines (stages) of code. Set the requirementsto
the command-loading level for each ALU we determine
performance of the desired system.

Additiona characteristic of system performance is
pipeline usage. Based on three stages for computation
execution [14]: loading input data, computation execu-
tion and output data extraction, thereafter these stages
can be implemented using pipeline. The first stage is
loading input data, three-address command is in (ex.
loading i “portion” of data). The second stage is compu-
tation execution (ex. computation of thei “portion” of data
and loading i-1 “portion”). The third and the last one stage
is extract output data, three-address command is out (ex.
extract output results of thei “portion” of data, computation
i-1“portion” of dataand loading i-2 “ portion”).

134

The advantage of using such pipeline is reducing
number of paralle lines of code. All commands of
loading and extracting data and also arithmetic and
logical commands are executed in parallel way but with
different “portions’ of data.

C2HDL system executes synthesis all the HW modules
that are necessary for computation execution. Accordingly,
there is no needed to use commands to load congtants into
the RAM provisonaly read this data from the ROM but
expedient directly save thisdatain the RAM

| Command number | | Port number || Constant |

Liubomyr Tsyhylyk

originaly have initialized it during HDL code synthesis.
This allows saving the ROM resource usage assigned to
gore pardld program that are required by the HDL system.
Fig. 1 shows example of three-address RGB—YUV
program (coefficients are random). Here are shown
paradle program characteristics and determined pipeline
stages of data computation. The parale branches
number (ALU = 5) was chosen based on the efficiency
level. Conditional command fields are absent for
convenience.

| Parallel command number

«|» means that there is no Command number in

command on the stage sequential program

80%

ALU’s loading level

100% 60% 60% 40%

I-st pipeline stage. Loading input data
from input ports.

II-nd pipeline stage. Calculation
execution.

Ill-rd pipeline stage. Extract results
through output ports.

Fig. 1. Three-address program codein paralld and sequential

The parald code structure can be shown in next
mathematical modd (5).

pL ={((INn),(ouT),(ALU),) (5)

wherejl N — ordinal number of a stage, xI N — ordinal
number of input port, yl N — ordinal number of output
port, zI N —ordinal number of ALU.

N ={(0)(y[0)(2){((in}(reg e A)} ©)
ouT = {(0)(ylo)(2)({{out }reg A}
1(j0)(¥i0)(2)

I
1
!
I

ALU = T <<<comand ><reg dest ><reg af91>>|A >I, ©
f <reg ar92|A> b

Mathematical model (5) alows describing any
paradld agorithm that executes as input task of C2HDL

(")

<

system. Input/output ports and ALUs numbers are
configurable (Fig. 2) that allows select configuration to
get user desired performance after analyzing. Fig. 2
shows example of previous (Fig. 1) three-address se-
guential code in three different paralle configu-
rations. There is no needed to make paralel in-
put/output ports thus the round of execution arithmetic
operations, with maximum parallel branches, islonger
than the round of input/output commands execution
(see the first configuration on Fig. 2).

V1. SEQUENTIAL TO PARALLEL CODE
TRANSFORMATION METHOD

Taking into account requirements described in
section IV lets dig deeper and create additional re-
guirements to sequential code. Take mathematical
model P as essential and complement it with additio-
nal fields.

Program Code Parallelization Method

100% - 80% 60% 60% 40%

ALU’s loading level

100% 71.4% 71.4%

135
Parallel ALUs Parallel
commands
count
count
/'7\\
O, 5 5
/'7\\
(2) 3 7
/'7'\\
@_ 2 ’
3
(]
4
100% 88.8%

Fig. 2. Paralle configurations of three-address program RGB—Y UV

The am of extending mathematical model is to
enlarge information of sequential code with relationships
between commands. Sequentia code structure will be
next — (9).

Pmod ={PUI} 9

} aexecutelnL ine . ; source 44;;6 fi

I = :
@ b

wherejl N —ordered line number of command in sequential
code; executelnLingys! N — ordered stage number (paralel
line number), in which, the indant command will be
executed; sourceygl N — ordered line number of command
in sequentid code, the firg argument of instant command is
initidlized there sourceyl N — ordered line number of
commeand in sequential code, the second argument of ingant
commeand isinitidized there sourceOutyesl N —ordered line
number of command in sequentia code, the output argument
of “out” command isinitidized there

Additiona fiddsin (10) are prime numbers. It doesn’t
contain any arrays or data structures.

Method for program code parallelization consists of
two stages:

1. Field initialization (Table 2): sourcey g, Sourceyg,
and sourceOutge. The aim of this stage is to show up
all command relationships. Each command argument is
anayzed to determine number of line where this
argument was initialized. “in” and “out” commands
placement is executed on this stage also. Each “in” or
“out” command contains port number (5). These port
numbers are used as vectors for infout command
execution. Arrangement of mutual placement of in/out
commands is the same, for the same port names, as in

| (10)
j ésource ag 2> SourceOut .

sequential program code. Algorithm flow chart can be
created based on the results of this stage. This informa-
tion allows displaying the algorithm for visualization.

2. Recursive method of the code paralelization
(Table 3). This is the main round of code paralle-
lization. Field executelnLineye is formed in this stage,
thisfield is equal toj (jl PL), al fields of PL (5) are
determined also in this stage. This method is based on
two-level recursion where the first level is command
determination for initialization state analyzing its
arguments, the target of the second level is command
placement analyzing in parallel code that initializes
input arguments of instant command. The idea of this
method is to place those commands in parallel code
the results of execution of which are required for
farther computations.

VII. EFFICIENCY OF THE METHOD

Paralldlization method efficiency can be determined
according to the next criteria:

* PC time consuming required for paralldization
process.

* PC memory usage required for paraldization
process.

Parallel commands count.

o Paralldization level of sequential code (paralel
branches count).

Personal computer with next performance characte-
ristic used for investigation efficiency of current method:

Processor
RAM
Operdtion system

Intel Corei7-3630QM 2.4 1T
DDR3 1600 MI'; 16 T'b
Windows 7 Professional 64-bit.

136

Liubomyr Tsyhylyk

Table 2

Field initialization method

Discription

Example

All sequential commands analyzing.

If ingtant command is“ in” or “out” —this
command should be assigned to correspond
row ‘ j ' of parale command and column
according to the port number of this
command.

If there is any input/output command
placedin’ j’ line and specific port of parallel
code — theredfter this instant command
should be placed inthe next free paralld line.

IN (6) and OUT (7) of set PL (5) are determined in this stage.

All sequential commands analyzing.

If the ingtant command is not “in” or
“out” — need to determine in which line of
sequentidl code command arguments are
initialized (régag1 and regag, see (4)). The
rov numbers where these arguments are
initiaized asdgned to regyg and regaq
accordingly.

BB X2 BhgeXB Bhoo
=ARPEBA =00

(BE@E)
-

All sequential commands analyzing.

If the instant command is* out” — need to
determinein which line of sequentid codeits
argument is initidized (regues, Se€ (4)). The
row number where this argument is
initialized assigned to sourceOut yeg.

- (@ B KB BppXONOKE B [
Byge= 08

Table 3

Recur sive method of the code par allelization

Step #

Description

Explanation

Initialize paralld code characteridtic:
— pardld ALU count;
— ALU loading level (percentage of commands).

arithmetic,

placeCommand = false

Initialized field executel nLinejey=-1. Thisfidd is used by

logic and conditional commands. Field

executel NLineyey is aso set for commands “in” and “ out” .
Set condition for command placement in pardlel code

Example:

— ALU count = 4;

— ALU loading level (com leve) at least 70 %.

Command placement condition is used for
recursive level identificetion. It is forbidden to place
commands in paralld code on the first level of
recursion. Commands are placed in parallel code only
on the second level of recursion.

Thefirst Tevel of recursion executes.

from the sequentia code.

Select arithmetic, logic, condition or input/output command

[f instant command is one of the arithmetic, Togic or

farther analyzing. If thisis‘out’ — select numl
command from sour ceOutye field for anayzing.

conditional commands — select source,q; and bz?urfceargz for
o

Select commands that initialized input arguments of
the instant command sel ect sourcey g and Sour Ceygy,
or sour ceOUt yeg.

According to selected command executel nLinge fidd is
analyzed. Goto step #5if thisfiddisequa to‘-1',
If executel nLineyy isequal to ingant pardld line (this

commands) —goto step #2, in other case go to tep #6.

checking is gpplicable only for arithmetic, logical or condition

*-1" means that instant command is not placed in
pardlel code. _

Only those commands can be placed in parallel code
which arguments are already initialized and placed in
parale code.

The second Tevel of recursion executes.
Analyze selected command. Set field placeCommand =
true. Go to step #3.

to the step #2.

[T placeCommand field is true — place instant command in
parale code, in other case —increase ALU number and go

Program Code Parallelization Method

RN

L

[]

Example of placing command #18in paralld code.

137

Parallel ALU count - 4

100%

ALU’s loading level

| Parallel ALUs count - 3

83% 50% 50%

]
[

100% 71% 71%

Execute st@lp #2. Select command #26 (this is output command “out”). _‘St%)_ #3. sourceQutye field is analyzed of instant
command. Thisfield is equal to command #18. Step #4. executel nLineye field is analyzed of command #18, thisfield is equal
to ‘-1'. Step #5. Set placeCommand = true. Step #3. SoUrce,y and sourcey g fields of command #18 are analyzed. sourcey g
field is 17. Step #4. sourcel nLineye field of command #17 is analyzed, this field is equal to *3'. Theline ‘3" is not equa to
current line—"4’, then repeat step #4 for sourcerrg . SOUrCe, g fieldis 7. S))
Command #7 is constant command, as aresult tzhls command is not used for analyzing since it will be stored in RAM during
synthesis process. The arguments of command #18 are aready placed in parallel code, thus command #18 can be placed in
paralld cog?eelarécogrdl ng to index of ALU. Step #6. placeCommand field is analyzed. The field value is true. Place command
#18in par e.

Check AL U-loading level with commands for each paralel branch. The minima command loading level for parallel code #1 is
50 %. According to the input requirements, this value should not be less than 70%. Therefore, reduce number of parallel ALUs
from 4 to 3 and repeat parallel process again. The result of this processis pardlel code #2 that has minima ALU loading value

71 %. All regquirements are met.

The most optimal example for method efficiency investi-
gation is FFT dgorithm [17] [18] [19]. Thisagorithm allows
execute sequentiad commands pardldization to load ALUs
by commands uniformly. If number of pardld commandsis
equa to FFT base —thus dl pardld ALUs is 100 % loaded
by commands. The FFT characterigtic shows bel ow.

Number of points 64
Base 2
Input ports 2
— Real part 1
— Imaginary part 1
— Output ports 2
— Real part 1
— Imaginary part 1
Constants 32
Number of sequential three-address commands 2208

Based on the parald code characteristic 30 paralle
configurations of FFT algorithm were generated. The
maximum number of ALUs (for which cycle of
commands execution is the least) is 30. There is no
reason to paralel code for bigger number of ALUs since
the cycle of loading input and extracting output data for
FFT agorithm is 64 commands (based on FFT
characteristic of sequential code; (2208-(2-64)-(2-64)-
32)/64=30). Plot of the dependency between parallée
commands number vs parallel ALUs is created (Fig. 3).
This plot shows that the parallelization method is effi-
cient for any number of ALUs < 30. Paralld commands
number decrease with exponential dependency without
any peaks this mean that all ALUs are 100 % loaded by
the commands.

Analyzing information of this graph, we see that
calculation cycle for one ALU (1920) is less than

138

sequential commands count (2208). The root cause of
this difference is that system uses pipeline for
calculation. The parald process of input/output data and
data processing is used.

Sequential code paralldlization based on proposed me-
thod doesn’t require exponentia dependency of compu-
ter memory and does not use matrix representation for
storing sequential command dependencies [20]. Based
on (10) we just need four additional fields for each
command to perform parallelization.

Liubomyr Tsyhylyk

The result is linear dependency between number of
sequential commands and RAM memory usage.

The main criteria of method evaluation are machine
time consuming during algorithm execution. The
method consider being efficient if dependency
function of time of algorithm execution vs parallel
ALUs number is linear and gain of linear function
(coefficient a) islessthan 1. Fig. 4 shows dependency
graph between time required for parallelization and
parallel ALUs number.

PARALLEL ALU
Fig. 3. Paralld commands number vs paralld ALU dependency graph

Time required for code parallelization execution vs parallel ALUs

MS)

Pi

55

y =0,5568x + 66,602

1 2 3 4 5 6

7 8 9 10 11 12 13 14
PARALLEL ALU

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 4. Dependancy graph between time required for code parallelization vs parallel ALUs

Straight line on this graph is approximated function of
the data. This function can be outlined using next equation
(12):

y=o-x+b (11)

where y — time required for pardldization execution;
X — number of ALUs o — linear function gan;, b —
approximatdy time of algorithm execution using jus one
ALU.

This gain is equal to 0.5568 for current agorithm.
This means that proposed method is efficient because
dependence function between time required for

pardldization and pardle ALUs number is linear
(Fig. 4) and gain of this function a islessthan 1. Soin
other words, speed of increasing paralleization timeisin
two times dower than speed of increasing paralle
ALUs. Equation (11) can be used to forecast
approximate time required for algorithm execution with
specify ALUs number tentatively determine time
required for algorithm execution for one ALU.

VIIl. CONCLUSIONS

This article describes three-address program parall€li-
zation method. Three-address program definition has

Program Code Parallelization Method

been determined and a ligt of al commands (Table 1) is
shown. Structure and set of the main requirements for the
sequentia program code have been determined. These
requirements alow determining output characteristics and
paralld code structure. Mathemetical modd of paralldl code
was created. Purpose of all fidds of the algorithm and their
sructure was described. Method of code paralldization was
described according to its requirements. This method
contains of two dtages field initidization and recursive
method of code paralldization. The input data of code
paralldization method is sequentia three-address code and
desred peformance. Desred performance vaue is
specified by minima percentage of commands of ALU
loading. The example of code paralldization is shown that
emphasize on reaching of performance target. Efficiency of
the method is shown based on FFT 64 algorithm. The graph
of dependency between paralld commands and pardld
ALUs is shown (Fig. 3). The efficiency of this method is
proved based on graph analyzing result. The command
loading level for each ALU isamost equa 100 % for any
paralld configuration (ALUs number <= 30). The
dependency graph between time required for code
paralleization vs parald ALUsisshown (Fig. 4). Based on
the data of this graph, dependency between time required
for code paraldization execution and paald ALUs is
linear function with gain 0.5568. Taking into account
paralld code requirements and investigation results, we can
make conclusion tha this method is efficient. The method
efficiency denominates consuming required for algorithm
execution and computer resources usagein time,

REFERENCES

[1] “Compile Your C code into Verilog®, [Onling. Avallable http://c-
to-verilog.com/index.html.

[2] “C-+o-FPGA Solutions’, [Onling). Available
http://www.impulseaccelerated.com/products_universal.htm.

[3] “Handd-C Synthess Methodology”, [Onling. Available
http://www.mentor.com/products/fpga/handel-c/.

[4 1. Innovations, “CHAMELEON - the System-Level Desgn
Solution”, [Onling]. Available http://intron-
innovations.com/?p=sld_chame.

[5] A. Mdnyk, A. Sdo, V. Klymenko ta L. Tsyhylyk, “Chameleon —
system for specidized processors high-levd synthesis’, Sdentific-
technical magazine of National Aerospace University “KhAI” No. 5,
pp. 189-195, 20009.

[6] A.Médnyk, A. Salo, “Automatic generation of ASICs’, NASA-ISA
Conference AHS-2007, pp. 96-101, 2007.

[71 D. Cordes, A. Heinig and P. Marwedd, “Automatic Extraction of
Pipdine Padldisn for Embedded Software Usng Linear
Programming’, in |EEE 17" International Conference on Paralld and
Didributed Sysems, 2011.

139

[8] J V. Dyken and J. O. Ddgado-Frias, “A Medium-Grain
Reconfigurable Processor Organization”, School of Electrical
Engineering and Computer Science, Washington, 2011.

[9] A.Mdnyk, “Design of SCS’, 1996.

[10] L. Tsyhylyk, “Transformation Method of conditiond comands in
parald way”, Bullein of Nationd University “Ukraing’, pp. 156
159, 2010.

[11] D. Cordes, M. Engedl, O. Neugebauer and P. Marwedd, “ Automatic
Extraction of Pipdine Paralldism for Embedded Heterogeneous
Multi-Core Platforms’, Dortmund, Germany, 2013.

[12] A. Gontmakher, A. Mendelson, A. Schuster and G. Shklover, “Code
Compilation for an Explicitly Parallel Register-Sharing Architecture’,
in Internationa Conference on Parallel Processing, 2007.

[13] C. Roth, S. Reder, H. Bucher, O. Sander and J. Becker, “Adaptive
Algorithm and Tool Flow for Accderating SystemC on Many-Core
Architectures’, in 17" Euromicro Conference on Digital System
Design, 2014.

[14] T. Bernard; K. Bousas, L. Guang; C. R. Jesshope; M. Lankamp;
M. W. van Td; L. Zhang, “A Generd Modd of Concurrency and its
Implementation as Many-core Dynamic RISC Processors’, Inditute
for Informatics, University of Amsterdam, Amsterdam, Netherlands,
2008.

[15] A. Mdnyk and V. Mdnyk, Personal Supercomputers: Architecture,
Design, Application, Lviv: Lviv Nationd Polytechnic Universty
Publishing, 2013.

[16] L. Yan, B. Wu, Y. Wen, S. Zhang and T. Chen, “A reconfigurable
processor architecture combining multi-core and reconfigurable
processing unit”, in 10" IEEE International Conference on Computer
and Information Technology (CIT 2010), 2010.

[17] A. Mdnyk and B. Dunets, “FFT Processor |P Cores synthess on the
base of configurable pipdine architecture’, CADSM’'2003, Lviv-
Sasko, 2003.

[18] V. Chendrakanth; Tripathi Srijan, “Customized Architecture For
Implementing Configurable FFT on FPGA”, 3° IEEE International
Advance Computing Conference (IACC), pp. 1280-1282, 2013.

[19] Y. Li, Z.-y. Wang, J. Ruan and K. Dai, “Research and Implement a
Low-Power Configurable Embedded Processor for 1024-Point Fast
Fourier Transform”, in School of Computer, Nationa Universty of
Defense Technology, Hunan Changsha, P. R. China, 2007.

[20] A. Menyk, I. Yakovleva, V. Uschenko, “Dedgn and Matrix
representation of Data How Graph”, Bulletin of Vinnitsky
Polytechnic Inditute No. 3, pp. 93-99, 2009.

[21] “C to HDL", 16 September 2014. [Online]. Available
http://en.wikipedia.org/wiki/C_to_HDL.
Liubomyr Tsygylyk

(I.tsyhylyk@gmail.com) received his
MS degree a Electronic Computa-
tiond Machine Depatment of Lviv
Polytechnic National University, Lviv,
Ukraine in 2007. Since 2008, he has
been working as assstant a Lviv
Polytechnic Nationd University. His
research interests indude high-perfor-
mance computations, FPGA-based
systems, C to HDL code compilation
and configurable processors synthesis.
He isthe author of eight articles and severd theses. Current
research includes C to HDL algorithm compilation with
specialized processors synthesis using full set of C-language
structures.

