УДК 521.21/22 О.М. Марченко, Н.П. Ярема, О.М. Лопушанський, Ю.О. Лук'янченко

ДОБОВІ РОЗВ'ЯЗКИ ГАРМОНІЧНИХ КОЕФІЦІЄНТІВ 2-ГО ПОРЯДКУ ЗА ДАНИМИ ГРАДІЄНТОМЕТРА МІСІЇ GOCE

У роботі визначені коефіцієнти другого порядку \overline{C}_{nm} , \overline{S}_{nm} гравітаційного потенціалу Землі за градієнтометричними вимірами супутника GOCE. Показана стабільність цих коефіцієнтів і дана оцінка точності їх визначення.

Ключові слова: супутник GOCE; осі інерції; гравітаційні градієнти; супутникова градієнтометрія.

Bcmyn

GOCE (Gravity field and steady-state Ocean Circulation Explorer) - це європейський науководослідний супутник, призначений для дослідження гравітаційного поля Землі і циркуляції океану. Місія реалізується Європейським космічним агенством (ESA). GOCE був запущений і виведений на орбіту 17 березня 2009 року з космодрому Плесецьк (Росія). Нахил орбіти супутника становить 96,70°. Його незвичайна стрілоподібна форма разом з "плавниками" має допомогти супутнику зберігати орієнтацію під час прольотів через потоки повітря, які присутні на висоті 260 км.

З точки зору геодезії головним приладом супутника є триосний електростатичний гравітаційний градієнтометр. Завдяки цьому приладу і реалізований метод супутникової градієнтометрії. Супутникова градієнтометрія є вимірюванням різниць прискорення компонент сили тяжіння у трьох просторових взаємно ортогональних напрямах шістьма акселерометрами (по два на кожній з трьох осей) [GOCE, 2009; Гофман-Велленгоф, Мориц, 2007]. Отже, виміряний сигнал відповідає похідним компонент прискорення сили тяжіння, тобто другим похідним гравітаційного потенціалу [Марченко, 2010].

Постановка проблеми

Мета досліджень – визначити гармонічні коефіцієнти низьких порядків гравітаційного потенціалу Землі \overline{C}_{nm} , \overline{S}_{nm} на коротких дугах. Також у роботі проаналізована стабільність визначення цих коефіцієнтів. Вихідними даними для нашої роботи є градієнтометричні виміри супутника GOCE. У табл. 1 подано дані цього супутника до та після високоточної фільтрації.

Виклад основного матеріалу досліджень

GOCE-градієнтометрія ґрунтується на таких основних залежностях:

$$V(P) = \frac{GM}{r} \sum_{n=0}^{N^*} \left(\frac{a}{r}\right)^n \sum_{m=0}^n (\overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda) \overline{P}_{nm} (\sin \varphi), \qquad (1)$$

де \overline{C}_{nm} , \overline{S}_{nm} – повністю нормовані гармонічні коефіцієнти гравітаційного потенціалу Землі; Р пт (sin φ) – повністю нормовані приєднані функції Лежандра степеня n і порядку m; GM – добуток гравітаційної сталої на масу прийнятої моделі Землі; а – велика піввісь земного еліпсоїда, до якої віднесені коефіцієнти \overline{C}_{nm} , \overline{S}_{nm} вибраної моделі планети; N* – максимальний степінь розкладу потенціалу V в ряд, $(r, \phi \lambda)$ – сферичні полярні координати точки, в якій обчислюється V [Гофман-Велленгоф, Мориц, 2007].

Таблиця 1

Дані супутника GOCE							
	Дати вимірів	К-сть вимірів до фільтрації	К-сть вимірів після фільтрації				
1	2009.10.31 - 2009.10.31	86400	86064				
2	2009.11.01 - 2009.11.30	2591998	2591998				
3	2009.12.01 - 2009.12.31	2678398	2678398				
4	2010.01.01 - 2010.01.11	891496	891488				
5	2010.01.13 - 2010.01.31	1641601	1641601				
6	2010.02.01 - 2010.02.12	974920	973942				
7	2010.03.07 - 2010.03.19	1123200	1123200				
8	2010.03.25 - 2010.03.31	587601	587601				
9	2010.04.01 - 2010.04.30	2591999	2591999				
10	2010.05.01 - 2010.05.05	432000	432000				
11	2010.05.09 - 2010.05.31	1983601	799054				
12	2010.06.01 - 2010.06.30	2588992	2586565				
13	2010.10.07 - 2010.10.31	2156399	2156210				
14	2010.11.01 - 2010.11.30	2592000	2592000				
	Всього вимірів	22920605	21732120				

22 © О.М. Марченко, Н.П. Ярема, О.М. Лопушанський, Ю.О. Лук'янченко, 2011

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Рис. 1. Розподіл гравітаційних градієнтів за період одна доба

Рис. 2. Розподіл гравітаційних градієнтів за період один місяць

Подамо тензор гравітаційного градієнта V у вигляді матриці:

$$\mathbf{V} = \begin{bmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{xy} & V_{yy} & V_{yz} \\ V_{xz} & V_{yz} & V_{zz} \end{bmatrix},$$
(2)

тоді тензор сили тяжіння набуде такого вигляду в системі XYZ:

$$\mathbf{W}_{\mathbf{E}} = \begin{bmatrix} W_{xx} & W_{xy} & W_{xz} \\ W_{xy} & W_{yy} & W_{yz} \\ W_{xz} & W_{yz} & W_{zz} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 W}{\partial X^2} + \omega^2 & \frac{\partial^2 W}{\partial X \partial Y} & \frac{\partial^2 W}{\partial X \partial Z} \\ \frac{\partial^2 W}{\partial X \partial Y} & \frac{\partial^2 W}{\partial Y^2} + \omega^2 & \frac{\partial^2 W}{\partial Y \partial Z} \\ \frac{\partial^2 W}{\partial X \partial Z} & \frac{\partial^2 W}{\partial Y \partial Z} & \frac{\partial^2 W}{\partial Z^2} \end{bmatrix};$$
(3)

з елементами у системі r, \mathcal{G}, λ :

$$V_{zz}(r,\theta,\lambda) = V_{rr}(r,\theta,\lambda); \qquad (4)$$

23

$$\begin{cases} \boldsymbol{V}_{rr}(r,\theta,\lambda) = \frac{GM}{a^{3}} \sum_{l=L_{\min}}^{L_{\max}} (l+1)(l+2) \left(\frac{a}{r}\right)^{l+3} \sum_{m=0}^{l} \{C_{lm} \cos m\lambda + S_{lm} \sin m\lambda\} \boldsymbol{P}_{lm}(\cos\theta), \\ \boldsymbol{V}_{r,\theta}(r,\theta,\lambda) = \frac{GM}{a^{2}} \sum_{l=L_{\min}}^{L_{\max}} (l+1) \left(\frac{a}{r}\right)^{l+2} \sum_{m=0}^{l} \{C_{lm} \cos m\lambda + S_{lm} \sin m\lambda\} \boldsymbol{P}_{lm}(\cos\theta) \sin\theta, \\ \boldsymbol{V}_{r,\lambda}(r,\theta,\lambda) = \frac{GM}{a^{2}} \sum_{l=L_{\min}}^{L_{\max}} (l+1) \left(\frac{a}{r}\right)^{l+2} \sum_{m=0}^{l} m\{C_{lm} \cos m\lambda - S_{lm} \sin m\lambda\} \boldsymbol{P}_{lm}(\cos\theta), \end{cases}$$
(5)
$$\boldsymbol{V}_{\theta,\theta}(r,\theta,\lambda) = \frac{GM}{a} \sum_{l=L_{\min}}^{L_{\max}} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} \{C_{lm} \cos m\lambda + S_{lm} \sin m\lambda\} \left\{ \boldsymbol{P}_{lm}^{"}(\cos\theta) \sin^{2}\theta - \boldsymbol{P}_{lm}^{"}(\cos\theta) \cos\theta \right\}, \\ \boldsymbol{V}_{\theta,\lambda}(r,\theta,\lambda) = \frac{GM}{a} \sum_{l=L_{\min}}^{L_{\max}} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} m\{C_{lm} \sin m\lambda - S_{lm} \cos m\lambda\} \boldsymbol{P}_{lm}^{"}(\cos\theta) \sin\theta, \\ \boldsymbol{V}_{\lambda,\lambda}(r,\theta,\lambda) = -\frac{GM}{a} \sum_{l=L_{\min}}^{L_{\max}} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} m^{2} \{C_{lm} \cos m\lambda + S_{lm} \sin m\lambda\} \boldsymbol{P}_{lm}(\cos\theta). \end{cases}$$

Для розв'язання цієї задачі ми розділили вихідні дані за ≈ 9 місяців на добові дуги для того, щоб визначити гармонічні коефіцієнти низьких порядків.

Оскільки гармонічні коефіцієнти входять лінійно у найбільшу з шести елементів функцію V_{zz} , то легко скласти параметричні рівняння. За модельні значення градієнтів брались обчислені другі похідні V_{zz} за коефіцієнтами моделі **EIGEN-GL04C.** Тоді вільні члени матимуть такий вигляд: $L = V_{zz}^{gunipshe} - V_{zz}^{o64ucnehe}$. Вектор невідомих представлений приростами до коефіцієнтів, а саме: $X = \{\Delta C_{ij}, \Delta S_{ij}\}$, а матриця коефіцієнтів за невідомих **A** приймає форму C_{ij} та S_{ij} :

$$\mathbf{A} = \begin{pmatrix} a_{11}(t_1) & a_{12}(t_1) & a_{13}(t_1) & a_{14}(t_1) & a_{15}(t_1) \\ a_{11}(t_2) & a_{12}(t_2) & a_{13}(t_2) & a_{14}(t_2) & a_{15}(t_2) \\ a_{11}(t_m) & a_{12}(t_m) & a_{13}(t_m) & a_{14}(t_m) & a_{15}(t_m) \end{pmatrix},$$

де

$$f = \frac{GM}{a^3} (n+1)(n+2)(\frac{a}{r})^{n+3},$$

$$a_{11} = f \times P_{20}(\cos \vartheta),$$

$$a_{12} = f \times P_{21}(\cos \vartheta) \cos \lambda,$$

$$a_{13} = f \times P_{21}(\cos \vartheta) \sin \lambda,$$

$$a_{14} = f \times P_{22}(\cos \vartheta) \cos 2\lambda,$$

$$a_{15} = f \times P_{22}(\cos \vartheta) \sin 2\lambda,$$

$$\mathbf{X} = \left[\Delta \overline{C}_{20}, \quad \Delta \overline{C}_{21}, \quad \Delta \overline{S}_{21}, \quad \Delta \overline{C}_{22}, \quad \Delta \overline{S}_{22} \right].$$

Отже, загальний вигляд параметричних рівнянь буде таким:

$$\mathbf{X} - \mathbf{L} = \mathbf{V},\tag{6}$$

де V – вектор поправок.

01

Способом найменших квадратів були визначені невідомі \overline{X} , результати визначення коефіцієнтів низьких порядків, таких як C_{20}, C_{21} , S_{21}, C_{22}, S_{22} , оскільки GOCE був запущений на низьку орбіту з метою визначення високих частот, які мають істотне значення на локальних ділянках. Визначені гармонічні коефіцієнти другого порядку подано у табл. 2. З цієї таблиці зрозуміло, що ці коефіцієнти є доволі стабільними. Наведено також оцінку точності коефіцієнтів низьких порядків.

На рис. З зображено довготи осей інерції \overline{A} , \overline{B} , \overline{C} , обчислені за даними 258 розв'язків супутника GOCE за період з 8.2009 до 9.2010 рр.

Рис. 3. Довготи осей інерції \overline{A} , \overline{B} , \overline{C} , обчислені за даними 258 розв'яків супутника GOCE за період з 8.2009 до 9.2010 рр.

Висновки

Залежні від часу компоненти тензора інерції Землі обчислювались на основі 258 розв'язків супутника GOCE за період з 8.2009 до 9.2010 рр. для залежних від часу коефіцієнтів $\overline{C}_{2m}(t)$, $\overline{S}_{2m}(t)$. На противагу очевидним часовим змінам осі фігури \overline{C} ми отримали стабільність у часі для положення осі інерції \overline{A} .

Таблиця 2

				_	_	
TC	•	1		0	C	~
Iannung	ranmouluuuv	VOPOLITICUTID	πηνέορο ποραπέν	1	× .	uenez 🗅 cevuun
гаолиця	гармонтанил	косфіціснію	другого порлдку	U	D	
				- nm 7	$\sim nm$	

Епоха	C20*1E+6	C21*E11	S21*E11	C22*1E+6	S22*1E+6
2009.831512	-484.17	-32.0239	111.6101	2.439694	-1.4002
2009.845205	-484.17	-30.1241	153.7535	2.439567	-1.40026
2009.858904	-484.169	-24.3564	161.8832	2.439572	-1.4002
2009.872603	-484.17	-29.8568	156.0447	2.439593	-1.40017
2009.886301	-484.17	-25.7346	151.955	2.439642	-1.40026
2009.9	-484.17	-28.1922	155.401	2.439605	-1.40026
2009.913699	-484.169	-23.1408	160.293	2.439606	-1.40019
2009.927397	-484.17	-32.872	152.0843	2.439603	-1.40016
2009.941096	-484.17	-26.4538	152.4444	2.439633	-1.40027
2009.954795	-484.17	-26.1215	154.0705	2.439639	-1.40023
2009.968493	-484.169	-24.3834	159.7582	2.439608	-1.40021
2009.982192	-484.17	-35.7306	150.4449	2.439615	-1.40017
2009.99589	-484.17	-26.028	152.7552	2.439624	-1.40029
2010.009589	-484.17	-25.1578	153.4678	2.43965	-1.4002
2010.023288	-484.17	-26.3817	159.4266	2.439585	-1.40024
2010.039726	-484.17	-29.9901	156.9777	2.439607	-1.40016
2010.053425	-484.17	-25.9824	151.5956	2.439638	-1.40026
2010.064384	-484.169	-25.5016	152.9034	2.439633	-1.40019
2010.078082	-484.17	-27.7731	160.5832	2.439555	-1.40028
2010.091781	-484.17	-36.9159	149.6322	2.439583	-1.40021
2010.105479	-484.17	-23.921	154,793	2.439621	-1.40028
2010.179452	-484.17	-28.6831	148,4483	2.439536	-1.40025
2010.193151	-484.17	-29.4367	154,1955	2.439567	-1.40027
2010.206849	-484.17	-26.5836	162.4123	2.439545	-1.40022
2010.231507	-484.17	-27.0787	154.6569	2.439631	-1.40025
2010.246518	-484.17	-27.6075	155.257	2.439587	-1.40025
2010.258904	-484.17	-34.617	151,1579	2.439617	-1.40016
2010.272603	-484.17	-26.5325	152.8182	2.439624	-1.40028
2010.286301	-484.17	-25.5621	154.0148	2.439657	-1.40022
2010.3	-484.17	-24.7892	158.8044	2.439603	-1.40022
2010.313699	-484.17	-37,1095	149,1631	2.439602	-1.40019
2010.32871	-484.17	-27.6853	155.9516	2.439576	-1.40026
2010.341039	-484.17	-24.8423	152.6415	2.439622	-1.40021
2010.363014	-484.17	-27.3636	144.7517	2.439632	-1.40024
2010.375683	-484.17	-25.0896	154.9159	2.439579	-1.40029
2010.423288	-484.17	-35.9961	150.6836	2.439588	-1.40021
2010.436986	-484.17	-23.5487	155,9385	2.439619	-1.40027
2010.450685	-484.17	-26.8326	153.9258	2.439592	-1.40023
2010.464384	-484.17	-30.083	161.5362	2.43955	-1.4003
2010.480822	-484.17	-36.7879	149.3309	2.439596	-1.40019
2010.491781	-484.17	-22.7703	156.2672	2.439607	-1.40026
2010.776712	-484.17	-27.0351	151.7321	2.439533	-1.4003
2010.79589	-484.17	-37.3224	149.1903	2.439595	-1.40019
2010.812329	-484.17	-25.6166	152.1811	2.439641	-1.40026
2010.826027	-484.17	-28.7188	155.5825	2.439596	-1.40026
2010.790411	-484.17	-28.1063	145.386	2.439638	-1.40022
2010.842466	-484.17	-29.0871	155.0156	2.439563	-1.40027
2010.856164	-484.17	-26.3518	162.1701	2.439562	-1.40021
2010.869863	-484.17	-23.7796	153.5171	2.439633	-1.40027
2010.883562	-484.17	-30.7869	151.9177	2.439533	-1.40025
2010.89726	-484.17	-28.0886	160.3591	2.439552	-1.40024
2010.910959	-484.17	-27.2482	159.5646	2.439567	-1.40019

Література

Гофман-Велленгоф Б., Мориц Г. Физическая геодезия // Москва: МииГАиК. – 2007. – С. 285–286. Марченко О.М. Власні числа та власні вектори тензора градієнта сили тяжіння // Вісник геодезії та картографії. – 2010. – № 2.

GOCE Level 2 Product Data Handbook. - 2009.

Seeber G. Satellite Geodesy 2nd completely revised and extended edition // Walter de Gruyter, Berlin New York, 2003. – 589 p.

СУТОЧНЫЕ РЕШЕНИЯ ГАРМОНИЧЕСКИХ КОЭФФИЦИЕНТОВ 2-ГО ПОРЯДКА ПО ДАННЫМ ГРАДИЕНТОМЕТРА МИССИИ GOCE

А.Н. Марченко, Н.П. Ярема, А.Н. Лопушанский, Ю.А. Лукьянченко

В работе определены коэффициенты второго порядка \bar{C}_{nm} , \bar{S}_{nm} гравитационного потенциала Земли по градиентометрическим измерениям спутника GOCE. Показана стабильность этих коэффициентов и дана оценка точности их определения.

Ключевые слова: спутник GOCE; оси инерции; гравитационные градиенты; спутниковая градиентометрия.

THE DIURNAL SOLUTION OF SECOND-DEGREE HARMONIC COEFFICIENTS AFTER THE GOCE-MISSION GRADIENTOMETER`S DATA

A.N. Marchenko, N.P. Yarema, A.N. Lopushanskyy, Yu.A. Lukyanchenko

In the paper the second-degree harmonic coefficients \overline{C}_{2m} and \overline{S}_{2m} of Earth gravity potential were derived after the GOCE-satellite measurings. The stability of those coefficients is shown and estimation of its determination accuracy is given.

Key words: satellite GOCE; inertial axes; gravity gradients; satellite gradientometry.

Національний університет "Львівська політехніка", м. Львів

Надійшла 16.06.2011