5. Рахимов А. И. Химия и технология органических перекисных соединений. – М.: Химия, 1979. – 392 с. 6. Флейчук Р. І. Мономери на основі гідроксильмісних пероксидів: Дис. … канд. хім. наук: 02.00.03. / Роман Іванович Флейчук. – Львів, 2004. – 163 с. 7. Kropf H., Tokler A. Oxirane and oxetane scission with alkyl hydroperoxides on alumina // J. Chem. Res. Microfiche. – 1985. – № 27–32. – C.2948–2962. 8. H. Kropf u. A. Torkler, Zur Oxiran- und Oxetanspaltung mit Alkylhydroperoxiden an Aluminiumoxid. J. Chem. Res. (M) 1985, P. 2948–2962. 9. Beyrt, Hansens: Natuurvw. Tijdschr. 22, 249-69 (1940); С.А., 37, 5373 (1943). 10. Вуйцик Л. Б. Синтез мономерів та ініціаторів на основі моно- та полісахаридів: Дис. … канд. хім. наук: 02.00.03 / Лідія Богданівна Вуйцик. – Львів, 2009. – 143 с. 11. Milas N. A., Surgenor D. M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-Butyl Peroxide // J. Am. Chem. Soc. – 1946. – Vol. 68. – No. 1. – P.205–208. 12. Химический энциклопедический словарь. – М.: Советская энциклопедия, 1983. – 792 с.

УДК 661.183.1; 543.544

А. І. Чверенчук¹, І. В. Солоха¹, М. Г. Пона¹, І. П. Полюжин², А. М. Чернуха² Національний університет "Львівська політехніка", ¹кафедра хімічної технології силікатів, ²кафедра аналітичної хімії

ОДЕРЖАННЯ З ГЛИНИСТИХ МАТЕРІАЛІВ ГРАНУЛЬОВАНОГО ЦЕОЛІТОКЕРАМІЧНОГО АДСОРБЕНТУ ТИПУ 13Х ТА ЙОГО ВИКОРИСТАННЯ В ГАЗОВІЙ ХРОМАТОГРАФІЇ

© Чверенчук А.І., Солоха І.В., Пона М. Г., Полюжин І.П., Чернуха А. М., 2015

Одержано гранульований цеолітокерамічний адсорбент типу 13Х гідротермальною обробкою глинистих матеріалів. Підготовано отриманий адсорбент для його використання як стаціонарної фази в газо-адсорбційній хроматографії. Визначено основні хроматографічні параметри та показано ефективність синтезованого цеоліткерамічного адсорбенту типу 13Х щодо розділення кисню, азоту та метану порівняно з літературними даними для аналогічних цеолітових стаціонарних фаз. Ефективність досліджуваного матеріалу, як сорбента для газової хроматографії, за критерієм висоти, еквівалентної теоретичній тарілці в 1,4 разу є кращою, ніж для молекулярних сит типу 13Х за даними літератури.

Ключові слова: глини, цеоліти, газова хроматографія.

Granulated zeolite ceramic adsorbent of type 13X was obtained by hydrothermal treatment of clay materials. Obtained adsorbent was prepared for usage as a stationary phase in gas-adsorption chromatography. Basic chromatographic parameters were determined and the efficiency was shown for the synthesized zeolite ceramic adsorbent type 13X on the separation of oxygen, nitrogen and methane in comparison with published data for similar zeolite stationary phases. The effectiveness of the material tested as a sorbent for gas chromatography for the criterion of height equivalent theoretical plate is 1.4 times better than the molecular sieve type 13H according to the literature.

Key words: clay, zeolites, gas chromatography.

Постановка проблеми. Сьогодні в різних галузях промисловості зростають обсяги використання цеолітових матеріалів. Це зумовлено особливостями їх структури, яка передбачає розвинуту внутрішню поверхню, регулярну систему мікропор, високу здатність до катіонного обміну та можливість вибіркової адсорбції речовин, розміри молекул яких співрозмірні з діаметром вхідних вікон у структурні пустоти. Найпошареніші як ефективні адсорбенти, каталізатори, катіонообмінники саме представники ряду синтетичних цеолітів [1]. Синтетичні зразки, як правило, представлені дрібнокристалічними порошками та потребують додаткової агломерації для можливості їх подальшого використання під час багатьох технологічних процесів. При цьому гранульовані матеріали повинні характеризуватися належними показниками міцності та проникності. Тому пошук технологічних рішень, які б дали змогу сформувати адсорбувальний матеріал із необхідними експлуатаційними параметрами, є актуальним питанням хімічної технології в галузі виготовлення та застосування цеолітвмісних адсорбентів.

Цеоліти, які в хроматографії ще називають молекулярними ситами 5А, 13Х і т. д., добре відомі завдяки їх здатності розділяти кисень і азот при кімнатній температурі. Ці адсорбенти часто використовують для хроматографічного аналізу газових сумішей медичного та технічного призначення, а також для визначення низькомолекулярних органічних сполук. Методики хроматографічного розділення водню, кисню, азоту, метану та оксиду вуглецю за допомогою синтетичних цеолітів було розроблено понад 55 років тому [2], і процедура такого розділення була стандартизована, що відображено в нормативних документах, наприклад, ГОСТ 14920-79 [3], ГОСТ 23781-87 [4] та GPA 2261 [5]. Застосування цеолітів у хроматографії ускладнюється адсорбцією CO_2 і присутністю слідів води в газі-носії, що спричинює поступове зниження ефективності колонки з цеолітом і відповідно погіршення розділення азоту і кисню.

Аналіз літературних даних та постановка проблеми. Одним із основних методів виготовлення гранульованих цеолітових матеріалів є формування гранул з дисперсного порошку цеоліту та зв'язуючих компонентів, у результаті чого стає можливим одержання композиту, в якому цеолітова фаза зчеплена з частинками зв'язки та рівномірно розподілена в об'ємі зразка [1, 6]. При цьому ставляться особливі вимоги до цієї групи матеріалів не тільки за показниками загальної адсорбційної здатності, але й міцності, пористості, хімічної стійкості та ін. Це пов'язано з роботою адсорбентів у жорстких умовах та необхідністю мінімальної тривалості циклів адсорбція-десорбція. Як практичний, так і науковий інтерес в зв'язку з цим становлять керамічні адсорбенти, технологія виготовлення яких дає змогу регулювати порові характеристики структури і досягти цим необхідних фізико-технічних параметрів випаленого матеріалу.

Для вирішення завдання формування цеолітових тіл заданої форми, як правило, використовують ряд речовин, які забезпечують насамперед належні формувальні властивості маси. Це аморфний SiO₂, гідроксид алюмінію та розчини його основних солей, природні силікати, рідке скло, органічні полімери та інші. Природні глинисті мінерали з огляду на їхню доступність та технологічність використовуються як зв'язуюче [7]. Однак, при цьому треба звернути увагу на незадовільну формувальну здатність глинистих мас через малу пластичність каолінової зв'язки та зниження проникності випаленої глинистої субстанції, особливо на основі монтморилонітових глин. Вміст глинистої зв'язки в цеолітових гранулах досягає 40 % [8, 9], що суттєво знижує їх сорбційну здатність.

Слід зазначити, що випал матеріалів на основі цеоліту необхідно проводити нижче межі температуростійкості цеолітової фази, що ускладнює задачу забезпечення належної міцності композиту через недостатнє спікання.

З огляду на означені проблеми постає питання приготування зв'язуючого компоненту та визначення його оптимального співвідношення з цеолітом для можливості отримання керамічного адсорбенту із задовільними параметрами міцності, проникності та сорбційної ємності, а також можливості його використання в газо-адсорбційній хроматографії.

Мета роботи. Одержання цеолітової стаціонарної фази та дослідження газохроматографічних характеристик цеоліту NaX, синтезованого вилуговуванням метакаоліну з подальшою гідротермальною кристалізацією. **Експериментальна частина. Об'єкти досліджень та обладнання.** На основі проведених досліджень було вибрано оптимальну технологію отримання цеолітовмісного керамічного адсорбенту з широкими можливостями регулювання його зернового складу. Матеріал у вигляді композиту системи "цеоліт – зв'язка", де основною робочою фазою є синтетичний цеоліт типу NaA (LTA). Як зв'язувальний компонент було використано глину Часів-Ярського родовища, модифіковану поротвірним (клітковина) та флюсувальним (лугоборосилікатне скло) додатками, що забезпечує як можливість отримання формувальної маси із здатністю гранулювання цеоліту, так і досягнення під час випалу необхідної міцності гранул та їх високопористої структури з достатньо високою проникністю. Склад зв'язки повинен забезпечити необхідне спікання матеріалу за температури, нижчої температуростійкості цеолітової фази. Технологічну послідовність синтезу цеолітової фази та приготування цеолітокерамічного композиту на його основі подано в роботах [10, 11]. Композит характеризувався високим вмістом цеолітової складової та задовільними технологічними характеристиками. У роботі [7] розроблено склади мас і технологічні параметри виготовлення керамічних адсорбентів на основі синтетичних цеолітів і глиновмісної зв'язки.

Для отримання керамічного цеолітвмісного адсорбенту у вигляді композиту системи "цеоліт – зв'язка" було приготовано серію дослідних мас на основі синтетичних цеолітів NaA і NaX (табл. 1).

Таблиця 1

Шифр маси		Вміст ком	понентів, мас. %	$0 \Gamma/cM^3$	П. %	
	глина	склобій	клітковина	цеоліт	p_c , $1/CM$	- ыдкр., 70
20Ц/80Зв-6	60,2	3,8	16	20	1,20/1,23 *	44,5/47,9
30Ц/703в-6	52,6	3,4	14	30	1,29/1,30	49,0/51,1
50Ц/50Зв-6	37,6	2,4	10	50	1,27/1,26	49,2/51,3
60Ц/403в-6	30,1	1,9	8	60	1,15/1,12	48,9/50,4
80Ц/203в-6	15,0	1,0	4	80	0,95/0,90	53,5/58,1
90Ц/103в-6	7,5	0,5	2	90	0,89/0,83	65,6/65,9

Склади мас і властивості цеолітокерамічного адсорбенту [7]

*- значення в чисельнику для композиту на основі цеоліту NaA, в заменнику – цеоліту NaX

Маси готували, як це описано в роботі [7], за класичною шлікерною технологією сумісним розмелюванням в кульовому млині склобою з глиною до залишку не більше 0,5 % на ситі № 0063 з подальшим додаванням клітковини і синтетичного цеоліту та перемішуванням тривалістю 0,5 год. Після гомогенізації суспензія зневоднювалася до консистенції пластичного тіста, з якого формували модельні зразки розміром $80 \times 25 \times 15$ мм. Балочки висушували до постійної маси та випалювали при 700 °C ($\tau_{витр}=2$ год). Результати визначення водопоглинання, міцності, середньої густини (ρ_c) та відкритої пористості ($\Pi_{відкр.}$) наведено в табл. 1.

Об'єктом дослідження був гранульоване молекулярне сито 13Х у формі цеолітокерамічного композиту складу 80ЦХ/203в-6 (табл. 1), який після випалу при 700 °С ($\tau_{внтр}=2$ год.) зберігався в контакті з атмосферою. Для приготування цеолітового матеріалу як нерухомої фази хроматографічної насадкової колонки цей масивний цеолітокерамічний композит подрібнювався в лабораторній ступці, просіювався через набір стандартних сит NN 01, 025, 04, 063, 1, після чого відбиралася фракція 0,25–0,40 мм. Хроматограми отримували на газовому хроматографі марки ЛХМ-72 в таких експериментальних умовах: газ-носій – гелій (оскільки водень з генератора водню, де він отримується електролізом води, може бути вологим); температура колонки та детектора – кімнатна, 17 °С; детектор за теплопровідністю – струм детектора 80 мА; секційна сталева колонка довжиною 2,5 метри і внутрішнім діаметром 4 мм; газовий кран-дозатор з петлею об'ємом 1 см³. Для визначення оптимальної швидкості рухомої фази вивчали вплив витрати газу-носія на ефективність розділення. Об'ємну витрату змінювали в межах 10–70 см³/хв. Хроматограми реєстрували за допомогою комп'ютера, використовуючи аналогово-цифровий перетворювач моделі

МТесh ADC-350 та програмне забезпечення з можливістю згладжування хроматограми цифровою фільтрацією (http://www.lnu.edu.ua/faculty/Chem/mtech/mtech.htm). Для термічної активації хроматографічна колонка нагрівалася зі швидкістю 24 град/хв до 380 °C, а потім витримувалася при температурі 380–388 °C протягом 15 хвилин.

Для порівняння експериментально отриманих хроматографічних характеристик досліджуваного цеоліту NaX з літературними даними [12] оцифровували літературні дані програмою GetData Graph Digitizer 2.26 (http://www.getdata-graph-digitizer.com/ru/download.php).

Результати експериментів та їх обговорення. Цеолітвмісні адсорбенти отримували при низькотемпературному випалі за керамічною технологією з використанням як зв'язки глинистих матеріалів, модифікованих поротвірним і флюсувальним додатками, як це було запропоновано раніше в роботі [7]. При цьому було розроблено оптимальні склади мас, які забезпечують належні показники міцності і параметрів пористості. Встановлено [7], що за даними електронної мікроскопії структура адсорбентів належить до корпускулярного типу і представлена кристалітами цеолітової фази, залишкової глинистої субстанції, переважно у випадку NaX цеоліту, а також поризованою керамічною зв'язкою. Порова структура характеризується двомодальним типом з переважанням пустот двох груп розмірностей – мікропор цеолітової фази (d < 0,002 мкм) і макропор розміром понад 0,05 мкм за невеликої кількості мезопор. Очевидно, що цеолітові матеріали такого складу та структури можна використовувати для хроматографічного розділення газів.

Гази розділяються на молекулярних ситах і виходять з колонки у такій послідовності: водень (H_2), кисень (O_2) не розділяється з аргоном (Ar), азот (N_2), метан (CH_4), оксид вуглецю (CO). На рис. 1 та 2 показано оцифровані хроматограми, які були наведені в узагальнюючій монографії [12, с. 62]. Звертається увага [12], що молекулярні сита необоротньо сорбують диоксид вуглецю, сірководень, диоксид сірки, хлорид водню.

Рис. 2. Хроматограма суміші: водень – 43 сек, кисень – 69 сек, азот – 133 сек, метан – 196 сек, оксид вуглецю 583 сек, на молекулярних ситах 5А з розміром частинок 0,25-0,36 мм (довжина колонки – 0,9 м) ій – гелій г витратою 20 см³/кв [12]

Температура колонки – 22 °С. Газ-носій – гелій з витратою 20 см³/хв [12]

Після швидкого короткотермінового активування досліджуваного цеоліту в термостаті хроматографа, яке описано в експериментальній частині цієї статті, отримано добре розділення кисню (час утримування 312 секунд), азоту (час утримування 402 секунди) та метану (час утримування 706 секунд) на хроматограмах повітря та суміші повітря з метаном (рис. 3 і 4).

Згідно із теорією тарілок ефективність хроматографічного розділення характеризується висотою, еквівалентною теоретичній тарілці (ВЕТТ), яка при максимальній ефективності хроматографічної системи має мінімальне значення. Величину ВЕТТ розраховували на основі довжини колонки (L=2500 мм) та кількості теоретичних тарілок (N), яку розраховували за параметрами хроматографічного піка – часом утримування (t_R) та шириною піка на половині висоти (w_{05}) за формулою відомою за формулою [13, с. 57].

Параметри піків та результати розрахунків ВЕТТ наведено в табл. 2. Залежності ВЕТТ від витрати газу-носія для кисню, азоту та метану представлені на рис. 5. Ці залежності добре апроксимуються рівнянням (1), яке є подібним до рівняння Ван-Деємтера, в якому лінійну швидкість газу-носія замінено на його об'ємну витрату (W):

$$BETT = A + \frac{B}{W} + C \cdot W$$
 (1)

Таблиця 2

Тиск		Кисень		Азот			Метан			
газу-носія перед колонкою, кгс/см ²	Витрата газу-носія, см ³ /хв	t _R	W ₀₅	N	t _R	W ₀₅	N	t _R	W ₀₅	N
1,0	11,90	312	29,12	636	402	37,37	641	706	65,97	635
1,2	16,13	250	21,54	746	322	27,95	735	564	49,60	716
1,4	19,84	218	18,47	772	280	23,76	769	489	42,13	746
1,6	24,47	188	15,58	806	241	20,29	781	423	35,51	786
1,8	29,15	168	14,10	786	216	18,30	772	378	32,03	772
2,0	34,24	151	12,83	767	194	16,54	762	340	30,28	698
2,2	39,14	139	12,10	731	178	15,83	700	312	28,06	685
2,4	44,83	127	11,42	685	163	15,04	651	285	26,56	638
2,6	51,50	118	11,19	616	151	14,25	622	264	26,01	571
2,8	57,49	109	10,74	571	141	14,05	558	245	24,90	536
3,0	65,54	101	10,35	527	129	13,51	505	226	23,84	498
3,2	73,08	94	10,04	485	120	13,02	471	210	22,97	463

Параметри піків (t_R, w₀₅ - секунди) та кількість теоретичних тарілок (N)

Коефіцієнти *A*, *B*, *C* рівняння (1) було знайдено за методом найменших квадратів, використовуючи відповідні вбудовані функції та блоки комп'ютерної програми для математичного проектування Mathcad (http://www.ptc.com/product/mathcad/), і наведено в табл. 3.

Рис. 5. Залежності ВЕТТ від витрати газу-носія

Після прирівнювання до нуля першої похідної від залежності (1) з отриманими на основі експериментальних даних коефіцієнтами можна розрахувати [3, с. 15] за рівняннями (2) та (3) координати мінімуму **BETT***min*, що відповідає оптимальній об'ємній витраті (*Wopt*) газу-носія, за якої досягається максимальна ефективність розділення хроматографічної системи:

Wopt =
$$\sqrt{\frac{B}{C}}$$
; (2)

BETT min =
$$A + 2 \cdot \sqrt{B \cdot C}$$
. (3)

Таблиця 3

Хроматографічний пік речовини	A	В	С	Мінімальна ВЕТТ, мм	Оптимальна об'ємна витрата (Wonm) газу-носія, см ³ /хв
Кисень	0,0162717	37,6701826	0,0634557	3,11	24,36
Азот	0,0779100	36,5876000	0,0649300	3,16	23,74
Метан	0,2763162	34,5209757	0,0645996	3,26	23,12
Узагальнено за піками О ₂ , N ₂ , СН ₄	0,1881547	35,2910634	0,0642974	3,20	23,43

Коефіцієнти А, В, С рівняння (1)

Ефективність хроматографічної системи закономірно зменшується із зростанням часу утримування, що виражається зростанням мінімального значення ВЕТТ від 3,11 мм для кисню до 3,26 мм для метану. Оптимальна швидкість дещо зменшується від кисню до метану і знаходиться в межах від 23,1 до 24,4 см³/хв. Коефіцієнт A лінійно залежить від часу утримування для всіх досліджених об'ємних витрат, і цю залежність зображено на рис. 6 для експериментальної витрати, що є близькою до оптимальної величини. Коефіцієнт B також закономірно змінюється від часу утримування для всіх досліджених об'ємних витрат, і ця зміна краще описується логарифмічною залежністю та є зображеною на рис. 7 для експериментальної витрати, що є близькою до оптимальної величини.

Кількість теоретичних тарілок і величина ВЕТТ залежать від піка, за яким здійснюється розрахунок. Загалом для хроматографічної системи параметри ефективності можна узагальнити за залежністю (4) ширини піка від його часу утримування (t_R) [13, с. 87].

$$w_{0,607} = \frac{2}{\sqrt{N}} \cdot t_{\mathrm{R}} \tag{4}$$

$$W_{0,607} = 0.8474576 \cdot W_{0,5} \tag{5}$$

Рис. 7. Залежність коефіцієнта **В** від часу утримування.

Газ-носій – гелій з витратою 24,47 см³/хв

Результати такого узагальнення параметрів ефективності показано на рис. 8 і 9, а коефіцієнт пропорційності залежності (4) та кількість теоретичних тарілок, що визначена за величиною цього коефіцієнта, подано в табл. 4.

Рис. 8. Узагальнення параметрів ефективності при різних витратах газу-носія за хроматографічними піками O₂, N₂, CH₄ згідно з рівнянням (4)

Таблиця 4

_, _,	- · · ·		•		
Витрата газу-носія, мл/хв	$\frac{2}{\sqrt{N}}$	Ν	ВЕТТ , мм	R	K _C
11,90	0,0791	639	3,91	1,354	0,252
16,13	0,0741	728	3,43	1,455	0,252
19,84	0,0726	759	3,29	1,468	0,249
24,47	0,0711	791	3,16	1,477	0,247
29,15	0,0717	778	3,21	1,481	0,250
34,24	0,0743	725	3,45	1,464	0,249
39,14	0,0757	698	3,58	1,396	0,246
44,83	0,0785	649	3,85	1,361	0,248
51,50	0,0823	591	4,23	1,297	0,245
57,49	0,0854	548	4,56	1,291	0,256
65,54	0,0889	506	4,94	1,173	0,243
73,08	0,0923	470	5,32	1,128	0,243

Узагальнення параметрів ефективності при різних витратах газу-носія за хроматографічними піками O₂, N₂, CH₄ згідно із рівнянням (4) та розрішення і селективності для піків O₂ і N₂

Коефіцієнти *A*, *B*, *C* рівняння (1) для залежності ВЕТТ від витрати газу-носія, яку було узагальнено за хроматографічними піками O_2 , N_2 , CH_4 , для порівняння наведено в табл. 2. Вони є близькими до цих самих коефіцієнтів, що були отримані для окремих піків. Узагальнені коефіцієнти *A* та *B* розташовуються за величиною між такими самими коефіцієнтами для піків азоту та метану, а величина *C* є дещо меншою ніж коефіцієнт *C* для метану (відносна різниця близько 0,5 %). Відповідно і координати екстремуму залежності ВЕТТ від витрати газу-носія, які отримані цими двома способами (для окремих піків та узагальнено – ВЕТТ = 3,2 мм при W = 23,4 см³/хв), є також близькими між собою.

Розраховані за формулами (6) та (7) критерії розділення [13, с. 102 – 103] – розрішення (R), коефіцієнт селективності (КС) для найближчих між собою сусідніх піків кисню та азоту при різних витратах газу-носія наведено в табл. 4.

$$R = \frac{t_{R}(N_{2}) - t_{R}(O_{2})}{w_{05}(N_{2}) + w_{05}(O_{2})}$$
(6)

$$K_{C} = 2 \cdot \frac{t_{R}(N_{2}) - t_{R}(O_{2})}{t_{R}(N_{2}) + t_{R}(O_{2})}$$
(7)

Рис. 9. Узагальнена залежність ВЕТТ від витрати газу-носія за хроматографічними піками О₂, N₂, CH₄

Коефіцієнт селективності (K_C) колонки описує різницю сорбційних властивостей розділюваних речовин для цієї колонки, які характеризуються коефіцієнтом Генрі (*Henry*). Коефіцієнт Генрі залежить від природи сорбента та речовини (сорбату), яка сорбується, а також від температури. Для однакового сорбенту (стаціонарної фази) та за постійної температури коефіцієнт Генрі залежатиме тільки від природи сорбату. Отже, теоретично коефіцієнт селективності (K_C) для певної хроматографічної системи в ізотермічних умовах повинен бути величиною постійною і не залежати від швидкості потоку рухомої фази (газу-носія). Експериментальні дані, отримані для коефіцієнта селективності (K_C) кисню та азоту на досліджуваному сорбенті, добре узгоджуються з цим теоретичним положенням, що видно з рис. 10, де експериментальні величини K_C випадково коливаються біля певного середнього значення, яке у цьому випадку становить 0,248. Хоча спостерігається деяке зниження коефіцієнта селективності із зростанням витрати газу-носія, але воно становить приблизно 0,001 на кожні 10 см³/хв і, крім того, коефіцієнт кореляції для такої лінійної двопараметрової залежності є дуже низьким (0,488).

Розрішення (\mathbf{R}) та коефіцієнт селективності (\mathbf{K}_{C}) пов'язані між собою відомою [13] (с. 103) залежністю (8), до якої входить ефективність розділення, тобто кількість теоретичних тарілок (N)

$$\mathbf{R} = 0,212 \cdot \mathbf{K}_{\mathbf{C}} \cdot \sqrt{\mathbf{N}} \tag{8}$$

Однопараметрову прямолінійну залежність з достатньо високим коефіцієнтом кореляції 0,9838 між розрішенням (**R**) та ефективністю розділення наведено на рис. 11. Використовуючи коефіцієнт пропорційності 0,0533 цієї залежності між величинами **R** та \sqrt{N} , можна розрахувати коефіцієнт селективності **K**_C (**K**_C = 0,0533/0,212 = 0,251), величина якого добре узгоджується із середнім значенням **K**_C = 0,248 для експериментальних величин (різниця становить лише 1,2 % від абсолютної заокругленої до сотих величини – 0,25).

Кількість теоретичних тарілок виражається через ВЕТТ за рівнянням (9)

$$N = \frac{L}{BETT} \,. \tag{9}$$

Теоретичну залежність (15) розрішення (**R**) двох сусідніх піків від витрати газу-носія можна отримати підстановкою виразів (1) та (9) до рівняння (8)

$$R = 0,212 \cdot K_C \cdot \sqrt{\frac{L}{A + \frac{B}{W} + C \cdot W}}$$
(10)

Отримана добра відповідність між експериментальними точками залежності розрішення (R) піків O_2 та N_2 від витрати газу-носія (рис. 12), а також теоретичною залежністю за рівнянням (15), у якому L = 2500 мм – це довжина колонки, добуток $0,212 \cdot K_C = 0,0533$ згідно із рис. 11, а коефіцієнти A, B, C взято для узагальненої залежності рис. 9 за піками O_2, N_2, CH_4 (табл. 3).

Рис. 10. Залежність коефіцієнта селективності (**K**_C) для кисню та азоту від витрати газу-носія

Рис.12. Залежність розрішення (**R**) піків **O**₂ та **N**₂ від витрати газу-носія

Рис. 11. Залежність розрішення (**R**) піків кисню та азоту від ефективності розділення для різних витрат газу-носія в діапазоні 12–73 см³/хв

Рис. 13. Залежність асиметрії на половині висоти для піків **0**₂, **N**₂ та **CH**₄ від витрати газу-носія

Розрішення (**R**) піків O_2 та N_2 досягає максимального значення біля 1,48, що відповідає ступеню розділення майже 99,7 % [13] (с. 102), при витраті газу-носія приблизно 30 см³/хв, що є достатньо близько до оптимальної витрати 23–24 см³/хв для максимальної ефективності хроматографічного розділення, чого досягають за мінімальної ВЕТТ.

Розраховану за формулою (11) [6] (с. 85) асиметрію на 50 % висоти піка при різних витратах газу-носія наведено в табл. 5.

$$Fas_50\% = \frac{|LM|}{|MN|},$$
(11)

де |LM| та |LM| — ширини фронтальної та спадної ділянок, відповідно, на 50 % висоти піка. Вказані величини виміряно в секундах. Як видно з рис. 13, асиметрія піків O_2 , N_2 та CH_4 дещо зменшується із збільшенням витрати газу-носія приблизно від 0,92 до 0,83. Характеристики асиметрії є меншими за одиницю, що свідчить про утворення "хвоста" (розмивання) спадної ділянки піка. Зростання асиметрії від піка кисню з найменшим часом утримування до піка метану, який виходить з колонки останнім, є закономірним і пояснюється більшим розмиванням внаслідок тривалішого перебування в хроматографічній колонці.

Таблиця 5

Витрата газу-носія,	Ки	сень	Азот		Метан		
см ³ /хв	LM	Fas_50 %	/LM/	Fas_50 %	/LM/	Fas_50 %	
11,90	13,95	0,9199	17,59	0,8893	30,71	0,8711	
16,13	10,30	0,9164	13,14	0,8879	23,03	0,8669	
19,84	8,80	0,9102	11,15	0,8835	19,53	0,8644	
24,47	7,42	0,9102	9,50	0,8804	16,45	0,8630	
29,15	6,69	0,9016	8,56	0,8787	14,80	0,8584	
34,24	6,08	0,9009	7,73	0,8767	13,97	0,8562	
39,14	5,71	0,8936	7,38	0,8723	12,93	0,8542	
44,83	5,38	0,8907	7,00	0,8701	12,19	0,8487	
51,50	5,25	0,8829	6,62	0,8666	11,90	0,8438	
57,49	5,03	0,8811	6,50	0,8613	11,37	0,8410	
65,54	4,82	0,8718	6,24	0,8583	10,85	0,8346	
73,08	4,67	0,8680	6,00	0,8547	10,43	0,8318	

Асиметрія піків О2, N2 та CH4 на 50 % висоти

Усі розраховані характеристики при оптимальній витраті газу-носія для дослідженого цеоліту було порівняно з тими самими параметрами, які було отримано з хроматограм, що наведені в монографії [12]. За результатами цього порівняння, які наведено в табл. 6, видно, що за хроматографічними властивостями досліджений цеоліт, який був синтезований методом гідротермальної обробки глини, є аналогічним до синтетичних цеолітів, що були синтезовані з чистих компонентів – алюмінат натрію (NaAlO₂), рідкого скла (Na₂O·nSiO₂), золь кремнієвої кислоти та NaOH.

Ефективність досліджуваного матеріалу як сорбента для газової хроматографії типу 13Х за критерієм величини ВЕТТ є дещо кращою (3,1–3,2 мм), ніж для тако самого типу молекулярних сит (2,2–4,5 мм) за хроматограмою з монографії [12]. Крім того, хроматографічні піки, отримані на досліджуваному матеріалі, є суттєво симетричнішими (0,86–0,91) від піків за літературними даними (0,22–0,32). Обидві хроматографічні колонки – як досліджувана, так і за літературними даними [12] забезпечують повне розділення піків кисню та азоту, а коефіцієнт селективності для літературних даних є дещо вищим – 0,396, ніж для досліджуваної хроматографічної системи – 0,247, оскільки в останньому випадку часи утримування є приблизно удвічі більшими, що збільшує знаменник у формулі (12) і зменшує величину коефіцієнта селективності $K_{\rm C}$.

Таблиця б

		r	1	
Характеристики розділення	13Х досліджуваний	13X	5A	
та параметри хроматографічних систем	цеоліт	[12], рис. 3.8 (с. 62)	[12], рис. 3.9 (с. 62)	
Витрата газу-носія, см ³ /хв.	24,47	20	20	
Розрішення для піків кисню та азоту, R	1,477 1,700		2,932	
Коефіцієнт селективності для піків	0.247	0.206	0.640	
кисню та азоту, <i>Кс</i>	0,247	0,390	0,040	
Довжина колонки, <i>L</i> , м	2,5	1,5	0,9	
Кількість тарілок за піком кисню, N	806	329	314	
BETT за піком кисню, мм	3,10	4,56	2,86	
Кількість тарілок за піком азоту, N	781	478	588	
BETT за піком азоту, мм	3,20	3,14	1,53	
Кількість тарілок за піком метану, N	786	681	485	
BETT за піком метану, мм	3,18	2,20	1,86	
Для піка кисню Fas_50 %	0,9102	0,3212	0,9004	
Для піка азоту Fas_50 %	0,8804	0,2174	0,7534	
Для піка метану Fas_50 %	0,8630	0,2831	0,8329	

Порівняння характеристики розділення при оптимальній витраті газу-носія для дослідженого цеоліту з результатами хроматографування, що приведені в монографії [12]

Слід зазначити, що на дослідженому зразку цеоліту не було досягнуто розділення метану з оксидом вуглецю (рис. 14), ймовірно через присутність в цеоліті певної кількості води (оціночно від 4–6 % на основі даних літератури [12]).

Рис. 14. Хроматограми стандартної суміші (2 % кисню, 10 % СО (217 сек), 5 % СО₂, 63 % азоту, 20 % водню – 68 с) та метану (226 с) у суміші з повітрям (кисень – 101 с, азот – 129 с) на активованому досліджуваному цеоліті (довжина колонки – 2,5 м). Температура колонки – 19 °С. Газ-носій – гелій з витратою 65,54 мл/хв

Відомо, що вплив води на час утримування оксидом вуглецю є складним, і навіть незначні коливання вологості цеоліту приводять до суттєвого погіршення розділення його піка з хроматографічною смугою метану, тому подальших спроб для розділення метану та *CO* не було зроблено, оскільки це є предметом майбутніх досліджень, а метою цієї роботи було встановити можливість використання синтезованого цеоліту для хроматографічного розділення газів.

Висновки. Вибрано оптимальну технологію отримання цеолітовмісного керамічного адсорбенту з широкими можливостями регулювання його зернового складу. Матеріал представлений в виді композиту системи "цеоліт – зв'язка", де як основну робочу фазу використано синтетичний цеоліт типу NaA.

Зв'язувальним компонентом була глина, модифікована поротвірним (клітковина) та флюсувальним (лугоборосилікатне скло) додатками, що забезпечує можливість як отримання формувальної маси із здатністю гранулювання цеоліту, так і досягнення під час випалу необхідної міцності гранул та їх високопористої структури з достатньою високою проникністю. Композит характеризувався високим вмістом цеолітової складової та задовільними технологічними характеристиками.

Ефективність досліджуваного матеріалу як сорбента для газової хроматографії за критерієм висоти, еквівалентної теоретичній тарілці – ВЕТТ=3,1–3,2 мм у 1,4 разу є кращою, ніж для молекулярних сит типу 13Х за існуючою хроматограмою, де ВЕТТ=4,5 мм.

Хроматографічні піки для досліджуваної хроматографічної системи є симетричнішими (0,86– 0,91), ніж піки за літературними даними (0,22–0,32), а коефіцієнт селективності для літературних даних є дещо вищим – 0,396 порівняно з досліджуваним цеолітом – 0,251.

1.Брек, Д. Цеолитовые молекулярные сита – М.: Мир, 1976. – 768 с. 2. George. Kyryacos, C. E. Boord Separation of Hydrogen, Oxygen, Nitrogen, Methane, and Carbon Monoxide by Gas Adsorption Chromatography - Analytical Chemistry. - Vol.29. - No.5 - 1957 - P.787-788. 3. FOCT 14920-79. Газ сухой. Метод определения компонентного состава. 4. ГОСТ 23781-87. Газы горючие природные. Хроматографический метод определения компонентного состава. 5. GPA 2261: Analysis of Natural Gas and Similar Gaseous Mixtures by Gas Chromatography. - Gas Processors Association (6526 East 60th Street Tulsa, Oklahoma 74145). 6. Мирский Я. В., Мегедь Н. Ф. О работах ГрозНИИ в области синтеза цеолитов – Сб. науч. тр. ГрозНИИ, – Вып. XXVI, часть первая -Грозный, 1974. – 175 с. 7. Солоха І. В., Вахула Я. І., Пона М. Г., Чверенчук А. І. Технологічні аспекти отримання керамічних адсорбентів на основі синтетичних цеолітів // Східно-Європейський журнал передових технологій. – 2013. – №4/8 (64). – С. 48–55. 8. Хейфец Л. И., Предтеченская Д. М., Павлов Ю. В. Влияние влаги на селективность разделения воздуха на иеолітах типа СаА - Вестник Московского университета. Сер. 2. Химия. – 2005. – Т. 46, № 1. – с. 45-48. 9.Иванова, Л. Ю. Применение цеолитов для осушки систем малых холодильных машин [Текст]/ Л. Ю. Иванова, В. Е. Шредер, А. А. Ермаков // Вестник ТГТУ. – 2006. www.tstu.ru/education/elib/pdf/st/2006/ivanovat.pdf 10. Солоха I. В., Пона М. Г., Чверенчук А. I., Кобрин О. В. Синтез цеоліту типу NaA з каоліну та кількісна оцінка його виходу // Вісник Нац. ун-ту "Львівська політехніка", Хімія, технологія речовин та їх застосування. – № 726, 2012. – С.323–328. 11. Солоха І. В., Мацієвська О. О., Чверенчук А. І., Пона М. Г. Очищення природних вод від амонійного азоту цеолітокерамічними адсорбентами // Вісник Нац. ун-ту "Львівська політехніка", Хімія, технологія речовин та їх застосування. – № 787. – 2014. – С.104–108. 12. Супина В. Насадочные колонки газовой хроматографии. – М.: Мир, 1977 – 256 с. 13. Пецев Н., Коцев Н. Справочник по газовой хроматографии. – М.: Мир, 1987 – 260 с. 14. Руководство к практическим работам по газовой хроматографии. Учеб. пособие для вузов / В. Б. Столяров, И. М. Савинов, А. Г. Виттенберг; Под ред. Б. В. Иоффе. – 3-е изд., перераб. – Л.: Химия, 1988. – 336 с.