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A plane axisymmetrical coupled dynamic problem of thermomechanics for an electro-
conductive hollow cylinder under homogeneous non-stationary electromagnetic action is
formulated. To construct its solution, the approximation of the determining functions —
the axial component of the magnetic field strength vector, the temperature, and the radial
component of the displacement vector with respect to the radial variable — by cubic poly-
nomials is used. As the result, the initial-boundary problem for determining functions is
reduced to a Cauchy problem with respect to the time variable for the integral characteris-
tics of these functions. The expressions of integral characteristics are obtained in the form
of a convolution of functions describing the uniform solutions and the given limit values
of determining functions. As an example, the amplitude-frequency characteristics of the
radial stresses in the given cylinder are analyzed numerically, with taking into account the
connectivity between the temperature and the displacement fields as well as without such
accounting.

Keywords: coupled problem of thermomechanics, hollow electroconductive cylinder, non-
stationary electromagnetic action, approrimation; integral characteristics.
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1. Introduction

In exploitation of many devices, whose constructive element is a hollow electroconductive cylinder, such
cylinder is subjected to the influence of non-stationary electromagnetic fields (EMF), including the one
of the impulse nature [1]. Impulse electromagnetic field creates the volume non-stationary Joule heat
sources (@ and ponderomotive forces F' [2-6] in the cylinder. These two physical factors contribute to
the appearance of the non-stationary temperature field T" and the field of mechanical movements U.
These fields are interconnected in general. In [2,7-9] the investigation of thermostressed state (TSS)
of a layer with plane-parallel boundaries under the heat action, under the induction heating caused by
the steady EMF and under the action of impulsed EMF on account of thermostatic energy dissipation
process is presented. However, the influence of impulsed EMF on thermomechanical behavior of the
hollow cylinder taking to account the process of thermostatic energy dissipation was studied not enough.

In this paper, the mathematical formulation of the coupled dynamic problem of thermomechanics for
a long hollow electroconductive cylinder under the homogeneous non-stationary electromagnetic action
is considered. The method of its solving uses an approximation of distributions of all key functions
over the thickness of the cylinder in radial variable r by cubic polynomials and the integral Laplace
transform in time ¢. The thermomechanical behavior of the cylinder under the electromagnetic impulse
(EMI) action accounting the process of thermostatic energy dissipation and without such consideration
is numerically investigated.
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2. Mathematical formulation of the problem

Let us consider a long hollow electroconductive cylinder reffered to the cylindrical coordinate system
(r,p,2), the axis Oz of which coincides with the axis of symmetry of the cylinder. The material of
the cylinder is homogeneous, isotropic and nonferromagnetic, and its physical and mechanical charac-
teristics are constant. The cylinder is under the action of non-stationary EMF, which is given by the
values of the axial component H, of the magnetic field stress vector H (r,t) on the inner r = ry and
outer r = rq surfaces of the cylinder

H.(ro,t) = H; (t),  H.(r1,t) = H(t). (1)
Here HF(t) is the given time t functions. The surfaces 7 = 79 and r = r; of the cylinder are heat
insulated and free of power loading.

Under these conditions, the estimated model for determination of thermostressed state of the cylin-
der has two stages: at the first stage from the equations of electrodynamics the magnetic field stress
vector H in the cylinder and caused by it Joule heat ejection () and ponderomotive forces F' are deter-
mined and at the second stage from the equations of connected dynamic problem of thermoelasticity
the temperature field 7" and the radial component U, (r,t) of the movement vector U = {U,(r,t);0;0}
and the corresponding components o;; (j = r, ¢, z) of the stress tensor ¢ are determined.

Based on the Maxwell’s equations the nonzero axial component H,(r,t) of the magnetic field stress
vector H = {0;0; H,(r,t)} can be determined from the equation

O2H, 10H, OH.,

or? e ar Mot @
under the boundary conditions (1) and zero initial condition
H.(r,0) = 0. (3)

Here o is the electroconductivity coefficient, i is the magnetic penetration of material of the cylinder.
Using obtained function H,(r,t) the specific densities of Joule heat ejection Q(r,t) and pondero-
motive force F' = {F,(r,t);0;0} are presented in the form

1 (0H,\? OH,

o\ Or

The temperature T'(r, t) and radial component U, (r,t) of the movement vector are determined from
the system of equations for the connected dynamic problem of thermomechanics for the cylinder

PT 10T 1+4¢€,0T 1+ 2v 02U, 1

Or? + r Or kOt & waE Otor _XQ’

(5)
0’U. 10U, U, 10°U, 1+vdT  (1+v)(1 - 2v)

a2 " ror 2 2o “1-vor | EQ-v)

Here k, A, v, a are the temperature and the thermal conductivity coefficients, Poisson’s coefficient,
the linear thermal expansion coefficient; E is the Young’s constant; p is the density of material of
cylinder; ¢ = \/E(1 —v)/ (p(1 +v)(1 — 2v)) is speed of elastic wave of expansion; &, is the parameter
that characterizes the connectivity of strain and temperature fields.

The system (5) is solved under the boundary conditions

aT(T())t) _ 8T(7"1,t) _
or 0 or 0 (©)
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of heat insulation of surfaces r = rg and r = rq, conditions of absence of power loading on these

surfaces
oU,.(ro,t) 4+ U.ro,t)  14v

= T t
T I @
U,.(r1,t v Uq(ry,t 1+v
r = T t
or + 1—-v Ty (r1,?)

and also zero initial conditions.

oU,(r,0)

T(r,0) =0, U.(r,0)=0, 5

~0. 8)

From the resulting functions 7'(r,t), U,(r,t), the radial o,,, circular o, and axial o,, components of
the stress tensor were determined by the expressions

2F oU, U,
Urr:1_2y |:( _V)87’ —l—V?—Oé(l—I-I/)T],
2F,, Uy, ou,
Tpp = T, [(1—1/)74—1/ 5 —a(l—l—u)T] ,
Ose =V (0pr + 04pp) —aB(1+v)T. (9)

3. The method of solving the problem

To construct the solutions of the described above initial boundary value problems of electrodynam-
ics (1)—(3) and connected thermoelasticity (5)—(8), we use an approximation of determining functions
in radial variable by cubic polynomials [10].

Solutions of defined above initial boundary value problems of electrodynamics (1)—(3) and connected
thermoelasticity (5)—(8) were constructed using an approximation of determining functions ®(r,t) =
{H,(r,t),T(r,t),U(r,t)}, in radial variable by cubic polynomials

3
Ho(rt) = ai(t)r’, (10)
=0
3
T(?",t) = Zbi(t)ri7 (11)
=0
3
Uplr,t) =Y ci(t)r'. (12)
=0

The coefficients a;(t), b;(t), ¢;(t) of approximation polynomials (10)—(12) are taken in the form of linear
combinations

ai(t) = ailel(t) + aiQHZQ(t) + aigHj(t) + ai4HZ_ (t), (13)
bi(t) = b T1(t) + by Ta(t), (14)
Ci(t) = c;1Up1(t) + cioUpa(t) + ci3T(ro,t) + ciaT(r1,t) (15)

and integral characteristics of axial component H,(r,t) of the vector H
1
H,4(t) :/ H,(r,t)r* dr, s=1,2, (16)
70
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the temperature T'(r, t)
1
T,(t) = / T(r,t)rtdr, s=1,2, (17)
ro

the radial component U, (r,t) of the vector U

r1
Uprs(t) :/ U.(r,t)r*tdr, s=1,2 (18)

L]

and functions that describe the limit values of determining functions ®(r,t) on the surfaces r = ry and
r = r1 of the cylinder.

The equation for finding integral characteristics H,s(t) (s = 1,2) of the function H,(r,t) is obtained
by integration of the equation (2) according to the formula (16) and using expressions (10), (13). As
a result, the system of equations for functions H. (t) was obtained

dH ,(t _
di( ) _ diH 1 (t) — doHoo(t) = dsHZF (t) + dyHZ (8),
de2(t) (19)
g dsHa(t) — deHaa(t) = drH (t) + dgH= (t),
which according to (3) is solved for zero initial conditions.
Here
1 g 1 g
di=— ) aa, diva = — ) uai, =14
o 32 (7,11'+1 _ Té—i-l) o 32 (7,11'+2 _ 7464r2)
il i+ 1 ) 12 i+ 2

Bt integrating the system of equations (5) according to the expressions (17), (18) and using the
representations (11), (12), (14), (15) we obtain the following system of four interconnected equations
to determine the integral characteristics T5(t) and U,4(t), temperature T'(r,¢) and radial movements

U, (r,t).

% durl " durg dTl " " .
ds ddt +dy gt + b1 7 dldj; dyTy = Ry(t),
* uT * uT * *
dg—l 10—2 —d7;Th + By —2 dgTy = Ra(t),
dt dt dt 20
% " 1 d2u7»1 ( )
digur1 + digure — 2 a2 - D1 (2),
% * 1 d2ur2
Here dT(ro,t) . dT(r,t)
o gk To, g% 1, .
Ri(t) = Q1(t) — dj a dg 7R
% dT(To, t) % dT(Tl, t)
Ro(t) = Qa2(t) — d1y e

1 1 T1
Qs(t) = X/ Q(r,t)r*dr, s=1,2; D,4(t) = / O, (r,t)r*dr, s=1,2;

70 To
D1 (t) = @1(t) — di5T (10, ) — digT'(11,1);  Pua(t) = Po(t) — digT'(ro,t) — daT(r1,1);
T1
CI)S(t) = / (I)(T, t)rs—i_ldra s = 17 27 (I)(T7 t) = /Bi’)(;_ij - B4F7”7

0
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where

1+e, 14w 14w (I +v)(1-2v)
fr = NCES Py =a— By = B —0)

K kal’
3 3 3
di = anbn, d5=Y anba, dj=pF2Y e,
i=1 i=1 i=1
3 3 3
df =2y ougca, di=P2) auscis, di=P2 Y auscia,
i=1 i=1 i=1
3 3 3
4y = aibin, di = aigbia, dj= auca,
i=1 i=1 i=1

3 3 3

£ £ S

o= E Qiscz2, di; = B2 E iaCi3,  dip = o § QaCid,
i=1 i=1 =1

3 i+1 i+1 3 i+1 i+1
=Y e (an - ) =S e (o - T
13 ' 1 1 + 1 9 14 . () 7 Z—l— 1 ]

=1 =1

3 i+1 i+1 3 i+1 i+1
* :ZC'?’ ay — "o * 226,4((1,1_7'1 — "o )

15 ' (2 7 Z + 1 9 16 4 (3 1 Z _|_ 1 9

3 i+2 i+2 z+2 pit2
* _Zc'l ajp— L _—T0 * 2‘32 g — "0
17 ' 1 1 Z+2 9 18 1 7 Z+2 ]

2+2 _ 7"6+2 z+2 7,(2]—1-2
* >k .
19_2023 <az2 it 2 s 20—Zcz4<a12 i+ 2 >;
; Tz+2 _pit? i+3 _ it
ai3—ya g = ——— o)
i+ 2 1+3

According to the conditions (8), the system of equations (20) is solved for zero initial conditions on
integral characteristics Tx(t) and U,4(t) of temperature T'(r,t) and radial motions U, (r,t).

To find solutions of the Cauchy problem for functions H.4(t), T5(t) and U,s(t) that are described
by systems of equations (19) and (20) at zero initial conditions on these functions, the integral Laplace
transform in time variable ¢ is applied to equations of systems (19) and (20). Then systems of algebraic

equations regarding to transformants of the functions H,s(t), Ts(¢) and U,s(t) are obtained

(p — diVH 1(p) — doH o(p) = dsH= (p) + dsH ()

21
—dsH 1 (p) + (p — de) Ho2(p) = d7H (p) + dsTT, (p), o
( dsptirt + dapTis + (Bip — di)Th — doTz = Ri(p),
dopTint + dioplyg — d7T1 + (Bip — ds) Ty = Ra(p),
(22)

p2 —
<C—2 - d13> Ur1 — dialrz = D41 (p),

.
—dy71 + (C d18> Urg = $o(p).
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Here p is the parameter of Laplace transform, and the top line describing the Laplace transformants
of the respective functions.

The systems (21) and (22) are solved by Cramer’s rule. We use Theorems of expansion and of the
functions convolution to the obtained transformants of solutions of these systems. As the result the
solutions of (19) are obtained in the form

2t
H.s(t) = Z/ [H*(1)Ba (k) + H™(7)Baa(k)] e dr, s=1,2 23)
k=1"0
where
Bll(k) = d3(pk - d6) + d2d7 BlQ(k‘) = H™ (,7_) d4(pk - dﬁ) + d2d8

2pr — (dl + d6) ’
Bo(k) = d7(pr — dv) + dsds ds(pr — dv) + dads
2pi — (di +dg) 2p — (di +dg)

pi are the roots of the characteristic equation p? — p(dy + dg) + didg — dads = 0.
Solutions of the system (20) have been written in the form

20 — (dl + d6)

ng(k) = H_(T)

6 tr
A3(pn)P2(7) — Aa(Pn)1(T) | =7
Upo(t) = / P\ T dr
©) nz_:l 0 A'(p)
T (6) = [t [ As(pa)®1(7) — As(pn)2(7) + Ri(7) Az (pa) — Ro(7)As(pn) pn(t—7)
1(t) = A e dr,
n=170 L pn)
6 tr
A10(pn)P2(7) — Ag(pn)P1(7) — R1(7)A11(pn) + Rao(7)Av2(pn r
n—l 0 L pn
Here
2 di+d di1dg — dod
Ai(p) = %Zfl - WP?’ + <% - d18/8%> p? + Bridis(dy + ds)p + dis(dadr — dids),
As(p) = —Bidiap? + Brdia(dy + ds)p — dia(dids — dody),
2 dy +d dids — dod
As(p) = %Zfl - WP‘% + <% - d13ﬁ%> p? + Bidis(di + ds)p + diz(dady — dids),
Aq(p) = —Bidi7p* — Brdiz(dy + ds)p + di7(dady — drds),
d dsdg — dod
As(p) = —5223174 =22 Z 22p% + B2 (d3dis — dadiz) p*

+ (dadgdig — dadiodi7 — d3dgdis — dadgdy7) p + dsdgds,

d dodig — dad
Ag(p) = 5224114 + = 1002 20+ By (dsdg — dadas) p* + das (dads — dadio) + dia(dady — dads) p,

B1 dg Bi(d13 + dig dg(diz + dig
Az(p) = c—4p5 — c—4p4 _ Al 1 dis) 3 )p3 ;- Bl T dis) > )p2

+ Bi(dizdig — dyadi7)p + dg(diadi7 — dizdig),

d do(di3 +d
—6—5174 + w& + da (d1ady7 — di3dig) ;

As(p) =

prn, are the roots of the characteristic equation

A(p) = aep® + asp® + asp* + azp® + agp® + ar1p* +ap =0, (25)
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where
ap = dydzdiydi; — dydrdisdis + didgdisdig + didgdi,diy,
a1 = P1(dy + dg)diydi; — Bi(di + dg)disdis,

L ffl 18 18 f; 82 4 B (disdis_disdiq),

/81 % % % *
az = _c_g(dl + dg)(di3 + dig),

— 10% 18+ 248 + c_;( 13+ dig),
B i

_ * * _ 1
as = 6_4( 1+d8)7 aﬁ——c—4.

aq =

Substituting expressions (23)—(24) into (10)—(15), we obtain the general solution of the coupled
problem of thermomechanics for the considered electroconductive cylinder under homogeneous non-
stationary electromagnetic action.

4. Investigation of amplitude-frequency characteristics of radial stresses under ampli-
tude modulated radioimpulse (AMRI)

The AMRI action is mathematically described by the function [11]
H*(t) = kH, (e‘ﬁlt - e‘ﬁQt) cos wt. (26)

Here k is a normalizing factor; Hy is the maximum value of the magnetic field stress on the surfaces
r =rg and r = ry; B and Py are parameters corresponding to times of fronts growth 7., and decay
Tdgeer. Of AMRI; w is the frequency of withstanding electromagnetic waves. Substituting (26) into the
obtained expressions of integral characteristics (23)—(24) and using formulas (10)—(15) we can write
down the solution of the problem of thermomechanics for the considered electroconductive cylinder
under the AMRI action.

Numerical analysis of the obtained solu- o’ /H, Pa m*/ A

tion was done for the electroconductive cylin- 24

der made of steel HISN9T with radiuses ry = 16 ’

19-1073m, 7 = 21 - 1072 m. The AMRI dura- o

tion 7; assumed to be 7; = 107 3s, 7; = 10745,

7; = 107°s. The parameters 31 and [ were 0.24

selected so that Tiper/Tgeer =~ 0.1. 016 s
The eigen frequencies of mechanical vibra- '

tions of the cylinder in connected and non- 08

connected problem formulations were analyzed

based on the characteristic equation (25). 0024 s
Putting €, = 0 in this equation, we get the 0.016

known equation to determine eigen frequencies 0.08

in the case of nonconnected problem of ther- 0

momechanics for the hollow electroconductive

cylinder. ®-107°, rad/s
For the selected cylinder parameters, the fol- Fig. 1}? Amplitude-frequency characteristics of stresses

o.. in cylinder under the radioimpulse action.

lowing values of the first two eigen frequencies rr
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of mechanical vibration w,s (s = 1,2) in the case of nonconnected
wr, = 8.76-10%rad/s;  wy, = 31.52-10°rad/s

and connected
wi =8.96-10°rad/s; w, =32.46-10°rad/s

statements of thermomechanics problem were obtained.

The study of amplitude-frequency characteristics (AFC) [12] of radial stresses o,..(r,t) for selected
AMRI durations was made, the research results are presented in Fig. 1.

The solid curves correspond to AFC of radial stress in connected and dashed lines- in non-connected
case. We obtained that on resonant frequencies of EMF equal w,s ~ 1/2w,s and w}, ~ 1/2w} that
is, in non-connected

Wy, = 4.38-10%rad/s;  w,, = 15.76 - 10° rad /s

and connected
wy, =4.48- 10° rad/s; w’ =16.23 - 106 rad /s

statements of the problem of thermomechanics we have the shifts of AFC peaks. The maximum values
of radial stresses in the case of connected and non-connected thermomechanic problems practically
coincide.

5. Conclusions

The application of approximations for all determining functions with respect to the radial variable
by cubic polynomials makes it possible to reduce solving the corresponding initial-boundary value
problems for these functions, which are the components of the complex coupled problem of thermome-
chanics for an electroconductive hollow cylinder under homogeneous non-stationary electromagnetic
action, to the corresponding Cauchy problem for integral characteristics for these functions.

The solutions of the Cauchy problem in the form of functions convolution, which describe the
uniform solutions and the limit values of the determining functions over the whole time period of
nonstationary electromagnetic action were found.

The study of the AFC radial stresses shows that their peak values increase linearly with the increase
of radioimpulse duration, for connected and non-connected thermomechanics problems are practically
the same.

[1] Batyigin Yu. V., Lavinsky V.I., Himenko L. T. Impulsnyie magnitnyie polya dlya progressivnyih tehnologij
[Impulse magnetic fields for advanced technologies|. Harkov, MOST-Tornado Publ., 288 p. (2003), (in
Russian).

[2] Tiermoprugost eliectroprovodnykh tiel [Thermoelasticity of conductive bodies]  J.S.Podsrigach,
Y. I Burak, A.R. Hachkevych, L. V. Chernjavska. Kyiv, Naukova dumka. (1977), (in Russian).

[3] Siluye i sverhsilnye magnitnyie polia i ikh primenenie [Strong and superstrong magnetic fields and their
applications]. Pod red. HerlahaF. Moscow, Mir Publ. (1988), (in Russian).

[4] Knopfel G. Sverkhsilnyie impulsnyie magnitnyie polia. Metody generacii i fizicheskie effecty, sviazannyie s
sozdaniem impulsnykh polej megaerstednogo diapazona [Superstrong impulse magnetic fields. Methods of
generation and physical effects, connected with action of impulse fields of megaersted diapasone]. Moscow,
Mir. (1972), (in Russian).

[5] TammI.E. Osnovy teorii electrichestva [Fundamentals of electricity theory]. Moscow, Nauka. (1976), (in
Russian).

[6] MoonF.C. Magnetosolid mechanics. New York, Willey. (1984).

[7] Gribanov V.F. Sviazannyiie i dinamicheskiie zadachi termouprugosti [Connected and dynamical problems
of thermoelasticity]. Moscow, Mashynostroeniie. (1984), (in Russian).

Mathematical Modeling and Computing, Vol. 4, No. 1, pp.69-77 (2017)



Solutions of coupled problem of thermomechanics for electroconductive hollow cylinder. .. 77

[8] PyrievYu.O. Poshirennia hvil u pruzhnikh seredovishchakh z urakhuvanniam sviaznosti fiziko-

mekhanichnikh poliv [Wave distribution in elastic medium considering connectivity of physico-mechanical
fields]. Lviv, Svit. (1988), (in Ukranian).

[9] Hachkevych O.R., MusijR.S., Stasiuk H.B. Zviazana zadacha termomekhaniky dlia elektroprovidnoho
sharu za odnoridnoij impulsnoij diji [Connected problem of thermomechanics for electroconductive layer
under homogeneous impulse action]. Fiz.-meckh. mekhanika materialiv. 45(4), 60-66 (2009), (in Ukra-
nian).

[10] Musiy R.S. Dynamichni zadachi termomekhaniky electroprovidnykh til kanonichnoji formy [Dynamic
problems of thermomechanics for conductive bodies of canonical form|. Lviv, Rastr-7 Publ. (2010),
(in Ukranian).

[11] Hachkevych O.R., MusijR. S., Tarlakovskyi D.V. Termomekhanika neferomahnitnykh elektroprovidnykh
elektromakhnitnykh poliv z moduliatsiieiu amplitudy [The therrmomechanics of nonferromagnetic conduc-
tive bodies for the action of the pulse electromagnetic fields with amplitude modulation]. Lviv, SPOLOM.
(2011), (in Ukranian).

[12] MusijR.S., Shymchak Y. J. The methodology of investigation of resonance phenomena in nonferromagnetic
electroconductive solids of canonical form under electromagnetic action with impulse modulating signal.

Fizyko-matematychne modeliuvannia ta infopmatsiini tekhnolohuu [Physico-mathematical modelling and
informational technologies|. 8, 113-129 (2008), (in Ukranian).

Po3B’'s13kn 38's13aH0T 3a,u,aL|| TepmomexaHle I,EI,J'ISI eﬂeKTPOI'IpOBI,D,HOFO
MNMOPOXXHUCTOIO u,man,u,pa 3a HECTaLl,IOHapHOI eJ'IEKTPOMaI'HITHOI ,D,II

Myciit P., dporomupenska X., Opumurius O.

Hauionanvrut ynisepcumem “JIvsiscora nostmexnirxa”
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

ChopMyIbOBAHO IIJIOCKY OCECUMETPUYHY 3B’s3aHy JUHAMIYUHY 3a/1a9y TePMOMEXAHIKHU JIJIst
€JIEKTPOIIPOBIJIHOIO TTOPOYXKHUCTOr'O IMUJIIH/PA 38 OJHOPIJIHOI HECTAITIOHAPHOI eJIeKTpOMa-
raiTHOl jii. s mobymoBu 11 po3B’d3Ky BUKOPHUCTAHO AIIPOKCUMAINIO BU3HAYAJIHHUX (DY H-
KIIiif — OChOBOI KOMIIIIOHEHTH BEKTOPA HAIPYKEHOCTI MATHITHOIO IOJIs, TEMIEPATYPH Ta
paiaJibHOI KOMIIOHEHTU BEKTOPa MEPEMIlleHb 3a PaIiaJibHOI0 3MIHHOK — KyOidHUMHU 110-
JiHoMamu. Y pe3yJsbTaTi BUXiIHI OYATKOBO-KPAOBI 3a/1a4i Ha BU3HAYAJIbHI (DYHKIIT 3Be-
Jeno 1o 3asa4d Kot 3a 9acoBoio 3MiHHOIO Ha iHTErpa/ibHI XapaKTePUCTUKN MUX (PYHKITII.
OrpumaHO BUpa3W iHTErpaJIbHIX XapPAKTEPUCTUK y BUIJISl 3ropTOK (DYHKIHA, MO OIH-
CYIOTh OIHODIZTHI PO3B’I3KM Ta 3aJ/iaHi 'PAHWYHI 3HAYEHHS BU3HAYAJbHUX (DYHKINH. K
MIPUKJI&]], 9ICJI0BO MTPOAHATI30BAHO aMILTITY/THO-IACTOTHI XapaKTEPUCTUKH PaliaJbHIX Ha-
[IpYy?KeHb y IIbOMY IIIHAPI 32 BpaxyBaHHS 3B s3HOCTI MOJIB TEMIIEpATyPH 1 MepeMilleHb
i 6e3 TaKOTO BpaxyBaHHSI.

Knto4oBi cnoBa: 36’s3ana 360640 MEPMOMETAHIKU; MOPOHCHUCTNUT, EAEKMPONPOSIOHUL
YUNMHIP; HECTNAUIOHAPHA EACKMPOMAZHIMHA 0iA; ANPOKCUMAULA; THMELPAALHI TAPAKIME-
PUCTNUKY.
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