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Abstract: The positive and cone fractional
continuous-time and discrete-time linear systems are
addressed. Sufficient conditions for the reachability of
positive and cone fractional continuous-time linear
systems are given. Necessary and sufficient conditions
for the positivity and asymptotic stability of the
continuous-time linear systems with delays are
established. The realization problem for positive
fractional continuous-time systems is formulated and
solved. Necessary and sufficient conditions for the
positivity and practical stability of fractional linear
discrete-time systems are established. The linear matrix
inequality (LMI) approaches are applied to testing the
asymptotic stability of the positive fractional discrete-
time linear systems. Sufficient conditions for the
existence are established and procedures for computation
of positive and cone realizations of the discrete-time
linear systems are proposed.
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1. Introduction

In positive systems inputs, state variables and
outputs take only non-negative values. Examples of
positive systems are industrial processes involving
chemical reactors, heat exchangers and distillation
columns, storage systems, compartmental systems, water
and atmospheric pollution models. A variety of models
having positive linear systems behavior can be found in
engineering, management science, economics, social
sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. An
overview of state of the art in positive systems is given
in the monographs [8, 13]. The stability and robust
stability of positive and fractional 1D linear systems has
been investigated in many papers and books [1-8, 11-14]
as well as of 2D linear systems [15, 16, 21, 36, 39]. The
realization problem of positive continuous-time and
discrete-time linear systems has been considered in [18,
20, 22, 24, 29, 31, 37]. Recently, the reachability,
controllability and minimum energy control of positive

linear discrete-time systems with time delays have been
considered in [47].

The first definition of the fractional derivative was
introduced by Liouville and Riemann at the end of the
19th century [50-52, 54, 55]. This idea was used by
engineers for modeling different processes in the late
1960s. The mathematical fundamentals of fractional
calculus are given in monographs [51, 52, 54, 55]. The
fractional order controllers were developed in [54].
Some other applications of fractional order systems can
be found in [53, 60, 61].

The main purpose of this paper is to give an
overview of some recent results on positive fractional
and cone fractional continuous-time and discrete-time
linear systems with delays.

The paper is organized as follows. In section 2 the
positive and cone fractional linear continuous-time
systems are introduced and sufficient conditions for the
reachability are established. Necessary and sufficient
conditions for the positivity and asymptotic stability of
continuous-time system with delays are given in section 3.

The fractional discrete-time systems and their
practical stability are addressed in section 4. The LMI
approaches to testing the asymptotic stability of the
fractional systems are applied in section 5. The cone
realization problem for discrete-time linear systems is
formulated and solved in section 6. Concluding remarks
and open problems are outlined in section 7.

The following notation will be used: R - the set of

real numbers; R™” - the set of nxm real matrices;

RT™ - the set of nmxm matrices with nonnegative

entries; R =R, M, - the set of nxn Metzler
matrices (real matrices with nonnegative off-diagonal

entries); I, - the nxn identity matrix.

2. Pasitive fractional continuous-time linear
systems and cone fractional systems
The following Caputo definition of the fractional
derivative will be used as follows [27, 44, 52]
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k-l<a<keN={2,.}, where ¢ €®R is the order

k
of fractional derivative and f (m) (r)= % .
T
Consider the continuous-time fractional linear
system described by the state equations
- x(t) = Ax(t)+ Bu(t), 0<a <1, (2a)
t
y(t) = Cx(t) + Du(r), (2b)

where x(t) e R”, u(t)eR™, y({)eR? are the state,
input and output vectors and A4eR™", BeR"™",
CeRP", DeRP",

Theorem 1. [44] The solution of equation (2a) is
given by

x(t) =Dy (#)x + ICD(t —1)Bu(r)dr, x(0)=1x,,(3)
0

where
) Akfka
Dy()=E (At*)= ) ————, 4
0(1) = E (A1) ;r(mﬂ) )
o gkteha-l
=) —— )

ATk +Da]

and E,(At") is the Mittag-Leffler matrix function,
I'(x)= J-e” +*'dt is the gamma function.
0

Definition 1. [44] The system (2) is called the

internally positive fractional system if and only if
x(1)eR) and y(@)eR? fort>0 for any initial
conditions x, € R} and all inputs u(r) e R, ¢ =0.

Theorem 2. [44] The continuous-time fractional
system (2) is internally positive if and only if the matrix
A is a Metzler matrix and

AeM,, BeRT", CeRP" DeRP". (6)
Following [18, 26] the definitions are recalled.

b1
Definition 2. Let P= e R™" be nonsingular
Py
and py be the k-th (k= 1,2,...,n) its row.

The set

(Pzz{xei}{":ﬁpkaO} (N

k=1

is called the linear cone generated by the matrix P.

In a similar way we may define for the inputs u the
linear cone

Q:={ue9¥m:ﬁqku20} (8)

k=1

q
e ERme

m

generated by the nonsingular matrix Q=

and for the outputs ) the linear cone

’V:z{yeﬂ’{p:ﬁvkyZO} ©)
k=1

Vi
generated by the nonsingular matrix V' = e RV,

Vp

Definition 3. The fractional system (2) is called
(P,Q, V') cone fractional system if x(/)e® and
y(t)eV,t>0 forevery x, P, u(t)eQ , t>0.

The (P, Q, (% ) cone fractional system (2) will be
shortly called the cone fractional system. Note that if
P=R",Q=%", ¥V=x" thenthe (R, R}, R) cone
system is equivalent to the classical positive system [18,

26].

Theorem 3. The fractional system (2) is

(P,Q, V) cone fractional system if and only if

A=PAP" e R™", B=PBQ"' e R"™",
C=VCP' eR", D=VDQ"' e R"™".

Proof is given in [34].

(10)

3. Positive continuous-time systems with delays and
their asymptotic stability

Consider the continuous-time linear system with ¢
delays in state

X(t) = Ax(t) + Zq:Akx(t —d)+Bu@t) (l1a)

y(t) = Cx(¢)+ Du(z) (11b)
where x(¢) eR", u(t)eR™, y()e R’ are the state,
input and output vectors, 4,, k=0,1,...,q; B, C, D are
real matrices of appropriate dimensions and 4,
k=1,2,...,q aredelays (d, >0).

The initial conditions for (11a) have the form

X0)=x(1) for re[-d,0], d=maxd, ~ (12)

where x, () is a given vector function.
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Definition 4. The system (11) is called (internally)
positive if and only if x(s)eR!, yeR] for any
x,(t) e R" and for all inputs u(r) e R”, 1> 0.

Theorem 4. The system (11) is (internally) positive
if and only if

AyeM,, A eRY", k=1,.,q, BeR"
CeR?™, DeRI™

»(13)

Proof'is given in [35].

The positive system (11) is called asymptotically
stable if and only if the solution of (1la) for
u(t)=0eR" satisfies the condition [imx(r)=0 for

11—
x,()eR:, te[-d,0].
Definition 5. Let a constant input y(f)=u e R be

applied to the positive asymptotically stable system (11).
A vector x, e R" satisfying the equality

9
0=>) Ax,+Bu (14)

k=0
is called the equilibrium point of the system (11)
corresponding to the input u.
If the positive system (11) is asymptotically stable,
then the matrix

9
A=Y A eM, (15)
k=0
is nonsingular, and from (14) we have
X, = —A7"'Bu (16)

Theorem 5. The equilibrium point x, corresponding
to strictly positive Bu > 0 of the positive asymptotically
stable system (11) is strictly positive, i.e. x, > 0.

Remark 1. For the positive asymptotically stable
system (11)

(17)

This follows immediately from (16) since Bu € 9{1

-1 nxn
A" eNR]

is arbitrary.

Theorem 6. The positive system (11) is
asymptotically stable if and only if a strictly positive
vector 4 € R” exists and satisfies the equality

q
AL<0, A=) 4, (18)

=0
Proof'is given in [35].

Remark 2. As a strictly positive vector A the
equilibrium point (16) of the system can be chosen, since

AA=A(-A"'Bu)=-Bu<0 for Bu>0 (19

Theorem 7. The positive system with delays (11) is
asymptotically stable if and only if the positive system
without delays

9
X=Ax, A=) A4 eM, (20)
k=0
is asymptotically stable.

Proof'is given in [35].

From Theorem 7 it follows that the checking of the
asymptotic stability of positive systems with delays (11)
can be reduced to checking the asymptotic stability of
corresponding positive systems without delays (20). To
check the asymptotic stability of positive system (11) the
following theorem can be used.

Theorem 8. [44, 45] The positive system with
delays (11) is asymptotically stable if and only if one of
the following equivalent conditions holds:

1) Eigenvalues s,,s,,...,s, of the matrix

A have negative real parts, Res, <0,k =1,...,n

2)  All coefficients of the characteristic
polynomial of the matrix 4 are positive
3) All leading principal minors of the matrix

a, .. a,
A= : 21)
anl arm
are positive, i.e.
a, a
la, >0, " ?|>0,..,det[-4]>0 (22)
4y Ay

Example 1. Using the conditions 2) and 3) of
Theorem 8, let us check the asymptotic stability of the
positive system (11) for g = 1 with the matrices

-1 03 0.5 0.1
4, = , A= (23)
02 -1.4 02 08

The characteristic polynomial of the matrix

0.5 04
A+ { 0.4 —0.6}
has the form
+0.5 0.4
det[l s— A= = 5% +1.15 +0.14(25)
0.4 s+0.6

and its coefficients are positive.
Leading principal minors of the matrix

0.5 —0.4
—A=
[—0.4 0.6 }

are positive, since A, =0.5, det[-4]=0.14.

(26)
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Therefore, the conditions 2) and 3) of Theorem 8 are
satisfied and the positive system (11) with (23) is
asymptotically stable.

Theorem 9. The positive system with delays (11) is
unstable for any matrices 4, k = 1,...,q if the positive
system

X= Ayx @27)

is unstable.
Proof. By Theorem 6 if the system (27) is unstable,
then a strictly positive vector 4 e®R” does not exist as

far as 4,4 <0. In this case a strictly positive vector
AeN? satistying the inequality (18) does not exist,
since for the positive system 4, € R7” and 4,4 eR’,
k=1,..4q.

Theorem 10. [35] If at least one diagonal entry of
the matrix A, is positive, the positive system (11) is
unstable for any 4, e R, k=1,...,q.

These considerations can be extended to positive

fractional continuous-time systems with delays.

4. Positive fractional discrete-time systems and
their practical stability

In this paper the following definition of the
fractional discrete derivative

x (o
A“xk=Z(—1)’[j]xk_j,0<a<l (28)
=0

is used, where o R is the order of the fractional
discrete difference, and

1 for j=0
(29)
ala=1)(a—j+1)
J!
Consider the fractional discrete linear system,
described by the state-space equations

for j=12,...

A“xy, =Ax, +Bu,, keZ, (30a)

where x, e R", u, eR", y, e R’ are the state, input
and output vectors and 4 € R™", BeR™", C e R™",

D e R,
Using the definition (28), we may write the
equations (30) in the form

k+1 (a
X+ +Z(_1)] [],Jxkjﬂ = Axk +B”k> ke Z+ (313.)
j=1

Vi =Cx; +Du,, (31b)
Definition 6. The system (31) is called the (internally)

.. . . . n
positive fractional system if and only if Xx, € R . and
v, €RY, keZ, for any initial conditions x, € R’

and all input sequences 1, € 9%:" , keZ,

Theorem 11. The solution of equation (31a) is given
by
k-1
X, =D, x,+ Z(D,FHB%
i=0
where @, is determined by the equation

(32)

k+1 ) o
O, =(4+1,0)D, + Z(—l)‘“( _ j(l)k_m (33)
i=2 !
with @, =1, .

The proof is given in [25, 44].

Lemma 1. According to [25, 44] if

0<a<l (34

then

(=1)* [7}0 for i=1,2,.. (35)
1

Theorem 12. According to [25, 44] letO<a<]1.
Then the fractional system (31) is positive if and only if

A+l aeR, BeRT™", CeR™, DeR"™ (36)
From (29) and (35) it follows that the coefficients

cjzcj(a)z(—l)f[,“ j j=12,.. (7
j+1

decrease steeply with increasing ; and they are positive
for 0 < a <1. In practical problems it is assumed that ; is
bounded by some natural number 4. In this case the
equation (31a) takes the form

h
Xy =A,x, + Zc/xk_j +Bu,, keZ, (38)
j=1

where
A, =A+1 (39)

Note that the equations (38) and (31b) describe a
linear discrete-time system with / delays in state.

Definition 7. The positive fractional system (31) is
called practically stable if and only if the system (38),
(31Db) is asymptotically stable.

Defining the new state vector

(40)
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we may write the equations (38) and (31b) in the form

%, =A% +Bu, keZ, (41a)
v, =Cx, + Du, (41b)
where
4, al, o, Gal, ¢, B
I, 0 0 .0 0 .
A=l0 I, 0 .0 0 |ew™ B=|. |ex™
.
00 0 L, 0
C=[C 0 .. 0]eR!", D=D=eRI™, i=(+hn

(41c)
To test the practical stability of the positive
fractional system (31) the well-known conditions for
positive systems [13] can be applied to the system (41).
Theorem 13. The positive fractional system (38) is
practically stable if and only if one of the following
conditions is satisfied:
1) the moduli of eigenvalues Z, k=1..n of the

matrix A4 are less then 1, i.e.
|z, |<1 for k=1,...,7,

2) det[zl, — A]# 0 for |z|<1,

(42)

3) p(A)<1, where p(q) is the spectral radius
defined by p(,:1) =max{| Z, |} of the matrix A,
1<k<n

4) all coefficients @, i=0,1,...,7—1 of the charac-
teristic polynomial
p,(2)=det[I(z+)-A]=z"+aG, 2" +..+az+a,

(43)
of the matrix [4— 1] are positive.
All principal minors of the matrix
G, . ag
T S )
| a..
are positive , i.e.
1@, [>0, | M50, det[l,~ A]>0 (45)
4 Gy
There exist strictly positive vectors
X, R, i=0,1,...,4 satisfying
Xo <Xjy X < Xyperer Xy <X, (46)
such that
A Xy + X +...+e,X, <X, 47)

Proof'is given in [17, 44].
Example 2. Check the practical stability of the
positive fractional system

A%, =0.lx,, keZ (48)

+

for «=0.5 and h=2.
Using (37), (39) and (41c), we obtain

CIZM:l, zzi, a,=0.6 (49)
2 8 16
and
06 L L
a, ¢ G 8 16
0 1 0O 1 O

In this case the characteristic polynomial (43) has
the form

z+04 -0.125 —0.0625
pi(2)=det[,(z+1)- 4] =| -1 z+1 0 =51)
0 -1 z+1

=7 +2.47* +1.6752+0.2125

All coefficients of the polynomial (51) are positive
and by Theorem 13 the system is practically stable.

Theorem 14. The positive fractional system (31) is
practically stable only if the positive system

X,=Ax, keZ, (52)
is asymptotically stable.
Proof. From (47) we have
(4, —-1)x,+cx +...+¢,x, <0. (53)

Note that the inequality (53) may be satisfied only if
such a strictly positive vector X, € R" exists that

(4,-1)%,<0 (54)

and since ¢X, +...+¢,X, > 0.

The condition (54) implies the asymptotic stability
of the positive system (52).

From Theorem 14 we have the following important
corollary.

Corollary 1. The positive fractional system (31) is
practically unstable for any finite /4 if the positive system
(52) is unstable.

Theorem 15. The positive fractional system (31) is
practically unstable if at least one diagonal entry of the
matrix /4 is greater than 1.

Proof. The proof follows
Theorems 14 and 13.

Example 3. Consider the autonomous positive
fractional system described by the equation

immediately from

-0.5 1
2 05

(35)

A%x,., ={ }xk, keZ,

for ¢ = 0.8 and any finite 4. In this case n=2 and
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(56)
2
By Theorem 15 the positive fractional system is
practically unstable for any finite / since the entry (2,2)
of the matrix (56) is greater than 1. The same result
follows from the fact that the characteristic polynomial
of the matrix A,-1,

03 1
A =A+1a=
“ ! 1.3

z+0.7
-2

-1

pA(Z):det[]ﬁ(z+])_A]:|: s

}=z2+042—zm

(57)
has one negative coefficient g, =-2.21.

5. Application of LMI approach to positive
discrete-time systems
Definition 8. [38] An inequality of the form

F(x)+F>0 (58)

where x takes values in the real vector space V, the
mapping F:V — §” is linear, and F e S”, is called the
linear matrix inequality (LMI). The LMI is called
feasible if such xe Vexists that the inequality (58) is
satisfied; otherwise the LMI is called infeasible.

Lemma 2. [38] A nonnegative matrix 4=R"" is

Schur matrix if and only if the LMI

R-P,~4R4, —cAR
—ah4, P,-P—c/R
blockdiag : : .
B4, —ach B, -
-c, R4, —cc,h
is feasible with respect to the diagonal matrices P,..., P,,, -
2) The LMI
[A[P+PA, 2R P+cP
P+eP, ~2p,

blockdiag : :

B 0

L c, B 0

is feasible with respect to the diagonal matrices B...P, -
3) The LMI
R0 0 -4R -P

0 P, 0 -, B 0
blockdiag 0 0 Fa  mafi 0
P4, -¢P .. -¢B B 0
-P, 0 0 0 P,
L 0 0 =P 0 0

Proof is given in [38].

Tadeusz Kaczorek

blockdiag [P— A"PA, P]>0
is feasible with respect to the diagonal matrix P.
Lemma 3. [38] A Metzler matrix 4=R""

(39)

is
Hurwitz matrix if and only if the LMI
blockdiag [-(A" P+ PA), P]>0
is feasible with respect to the diagonal matrix P.
It is well-known [38] that 4 =R"" is Schur matrix

(60)

ifand only if (4—7,) is Hurwitz matrix.

Lemma 4. [38] A nonnegative matrix 4 =R"" is
Schur matrix if and only if the LMI

blockdiag [-((A—1,)" P+P(A—1,)) P]>0(61)
is feasible with respect to the diagonal matrix P.

Lemma 5. [38] A nonnegative matrix 4=R"" is

Schur matrix if and only if the LMI
P AP
blockdiag , Pr>=0 (62)
—PA

P
is feasible with respect to the diagonal matrix P.
Theorem 16. The positive fractional system (31) is
practically stable if and only if one of the following
equivalent conditions

_Ch—leTzPl _ChAZH | R0 0 0
-6 R —-¢c,h 0 A 0 0
: S A A S
B _le—lpl —¢pc, P 0 0 B0
— ¢ h B _Cia ] 0 0 0 B,
¢ P ¢, R 1 _Pl 0 0 0 |
0 0 0 P 0 0
. . . . . . (64)
: : R : : : : >0
_zph-l })h+l 0 0 Ph 0
P, -2B] [0 0 0 P,
0 ]
0
. B 0 0 0
' 0 P 0 0 (65)
—F : A : : )
e : : .o :
0 0 0 P, 0
. 0 0 .. 0 B,
Ph+1 n
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6. Cone-realization problem for discrete-time
systems with delays

Consider the discrete-time linear systems with
delays

Xpy = AgX; + Ax, +Bouy + B, (662)

y =Cx,+Du,icZ, ={0]l,..}  (66b)

where x, €R", u, eR”, y, eRP are the state, input
and output vectors and 4, 4, € R"™", B,, B, e R"",
CeRP™, DeRM™.

Using Definition 2, it is easy to show that [32] the
transfer matrix

T(z)=C[l,z* — Ayz— A, ] (By,z + B,)+ D (67)

of the (?,Q, 1/)-system (66) and the transfer matrix
T(z)=C[I,z* — A,z A, ] (Byz + B,) + D (68)

of the positive system (66) are related by the equality
T(z)=VT(2)Q" (69)
Consider the linear system (66) with its transfer
matrix (67). Let R”"(z) be the set of pxm rational

proper matrices.

Definition 9. Matrices A, eR™, B, eR"™",
k=01, CeR", DeR"™ are called a (P,Q,V)-
cone realization of a given proper T(z) if they satisfy
the equality (67) and the conditions

PA P eR”, PB,O" e "™, k=0,

VCP™' e R?", VDQ™' e R (70)

where P, O and V' are nonsingular matrices generating
the cones ®,Q and 9/, respectively.
The (®,Q, ¥V )-cone realization problem can be

stated as follows: being given a proper rational matrix
T(z) e R”"(z) and non-singular matrices P, O, V

generating cones ®@,Q and ¥, finda (®,Q, 1/ )-cone
realization of T(z).

A procedure for computation of a (@,Q, ¥ )-cone
realization of T(z) will be proposed and solvability

conditions of the problem will be established.
From (68) we have

D = lim T(z) (71)
since liix;[z“(l,lz2 —~A,z—-A4)]" =0.
The strictly proper part of T(z) is given by
T,(2)=T()-D. (72)

It is easy to show that if the matrices 4y and 4, have
the following forms

0 .. 0 g
0 .. 0 aqa
AO — as c mnxﬂ’
10 .. 0 aqa,,
[0 0 a, |
1 0 a,
A] — 0 1 0 614 = mnxn (73)
0 0 .. T ay,,y
then
d(z) = det[lnz2 —-Az—-4]1= z — aZsz”’l —...—a,z—a,
(74)
and the n-th row of the adjoint matrix
Adj[1,z* — 4,z — A,] has the form
R,(z)=|1 2 z* 2] (75)

The strictly proper T"Sp (z) can be always written in

the form
Ni(2)
T (2)= 4 (76)
N,(2)
d,(2)
where
d(z)=2"" - al.2qlflzzq"' ——ayz—a,, i=lL..,p
(77)
is the least common denominator of the i-th row of
T,,(z) and
N;(2)=[n,(z2) n,(z) n,(z)], i=L..,p (78)

-1_2q;-1

2q; 0
n,(z)=n""z _

+...+nl.1jz+nlj, j=Ll...m

To the polynomial (77) we associate the pair of the
matrices

0 a
0 .. 0 a,

A.=10 .. 0 a, |enw,

 RI i=l..,p (79)

0 0 1 ap,.,

satisfying the condition
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d(z)=det[l z* — 4,z — A4,], i=1...p (80)

Let
C =block diag[C, C, c,l
C,=[0 0 NeR™, i=l..,p (81)
and
b, by
bs; b - D | k= 0L i =Ty j = Lo (82)
b, by’

be the j-th column of the matrix B . (k=0,1).

It is easy to show [32] that the entries of By, k= 0,1
are given by

O0g; _ . 2q-1 gplq _ . 2(q-1) or _ 1 1nm_ 0 .
bt =n]" b =m0 Lb) =6y, by =ny, j=1a.m
0q, _ 2q,-1 zlq, _ 2q,~1) or _ 1 1nm_ 0
be o ’bpj =Ny, ""’bpj _nm"bpj =Ny,

(83)

Theorem 17. [32] There exists a positive realization

A, €RY", B, eRT", CeR", DeR™ of T(z) i

1) T(0) =1lim(T (z)) € R”" (84)

2) the coefficients of d (z), i =1,..., p are nonnegative,
ie.

a; 20 fori=1,.,p;j=0,1,..2q -1 (85)

3) nt >0 fori=0,1,..,p; j=L...mk=0],..2g, -1 (86)

If the conditions (84), (85) and (86) are satisfied, a

positive realization of 7'(z) can be computed by the use

of the following procedure.
Procedure 1.
Step 1. Using (71) and (72) find Deiﬁfx’” and the

strictly proper matrix fSp (2)-
Step 2.
(i=0,,.,p; j=0,,..2q, 1) of d.(2), i=1,..,p, find
the matrices (79) and

Knowing the coefficients a;

A4, =block diag[4,,..., 4,,]€ R,

A, =block diag[Zn,...,Elp]eiRT" (87
Step 3. Knowing the coefficients n,f
(i=01,...,p; j=l..mk=0]l..2g,-1) of N,(z2)

(i =1,.., p)and using (82) find B, for k=0, and the

matrix C of the form (81).
A (@,Q,V )-cone

T(z) e R”"(z) and non-singular matrices P, O, V can

realization for a given

be computed by the use of the following procedure.

Procedure 2.
Step 1. Knowing T(z) and the matrices V, O and using
(69) compute the transfer matrix 7 (z).
Step 2. Using Procedure 1, compute a positive
realization 4, , B,, k=0,1, C, D of the transfer matrix
T(2).
Step 3. Using the relations

A, =P"'AP, B, =P'B,Q, k=01,
C=V''CP, D=V"'DQ

compute the desired realization.

Theorem 18. A (®,Q,¥/)-cone realization of

(88)

T(z) exists if and only if a positive realization of T(z)

exists.
The proof follows immediately from Procedure 2
From Theorem 17 for single-input single-output
system (m = p=1) we obtain the following important

corollary.
Corollary 2. There exists a (@, Q,'V )-cone

realization A4y, By, k = 0,1, C, D of the transfer function
T(z) if and only if there exist a positive realization 4, ,

B,, k=01, C, D of T(z)and the realization are
related by

A4, =P'4P, B,=P'Bg, k=01, C=CP

(or B, =P'B, and C =gCP) D =kD (89)

where g =QV ™" is a scalar.
For m = p =1 the transfer functions 7(z) and 7(z)
relate to 7 (z) = gT(z).

7. Concluding remarks and open problems

The positive fractional and cone fractional linear
continuous-time and discrete-time systems have been
addressed. The cone fractional linear systems have been
introduced. Necessary and sufficient conditions for the
positivity and asymptotic stability of the continuous time
linear systems with delays have been given. It has been
shown that the checking of the asymptotic stability of
these positive systems can be reduced to checking the
asymptotic stability of corresponding positive systems
without delays. Necessary and sufficient conditions for
the positivity and practical stability of fractional linear
discrete-time systems have been established. It has been
shown that the LMI approaches can be successfully
applied to testing the asymptotic stability of the positive
fractional linear discrete-time systems. The realization
problem for the discrete-time linear systems with delays
have been formulated and solved. Sufficient conditions
for the existence and procedures for computation of the
positive and cone realizations have been proposed. Many
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of these results can be extended to 2D positive fractional
linear systems.

Extensions of these considerations for the following
classes of systems are open problems:

1) 1D and 2D varying positive linear systems,

2) 2D hybrid systems without and with delays,

3) 2D Lyapunov systems,

4) 1D and 2D positive fractional switching systems.
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JAOJATHI JPOBOBI
TA KOHIYHI JIPOBOBI JITHIMHI CAHCTEMH
I3 3BATPUMKOIO

Taneym Kagopex

Y crarTi po3TIAHYTO OOMATHI Ta KOHIYHI apoboBi
HETICpEepPBHI Ta JAUCKpeTHI B 4aci JiHiitHI cuctemn. Hapeneno
JIOCTATHI YMOBHM UTSL TOCSDKHOCTI TaKMX CHCTeM. BeTaHoBIeHO
HeoOXimHi Ta YMOBH O JOJATHOCTI Ta
ACHMITOTHYHOI cTabGimBHOCTI HellepepBHHMX Y d4aci JiHIFHMX

IOCTaTHI
cucteM i3 3arpumkoro. ChopMmyinbOoBaHO Ta  PO3B’I3aHO
mpobIeMy peatizalii 1ogaTHUX APOOOBUX HEMEPEePBHUX ¥ Yaci
cucteM. BceraHoBieHo HeoOXigHi Ta AOCTATHI YMOBHM JUls
JOMaTHOCTI Ta MpakTH4HOI cTaGimsHOCTI ApOGOBUX ITHUCK-
perHuX y 4aci JiHifHux cucrem 3acTOCOBAHO 11ijXij JiHiTHOT
MaTpuyHoi HepieHOCTi (JIMH) mis neperipku acHMITOTHIHOT
cTabimsHOCTI  HOJaTHHX JApOOOBMX JTMCKPETHHX y  4aci
JIHIMHUX — CHCTEM. YMOBH  JUIS
iCHyBaHHS Ta 3alpONOHOBAHO MPOLEAYPH U PO3paxyHKY
JONAaTHAX Ta KOHIYHMX peaiizauiff IUCKpeTHMX Yy 4aci
JHIMHUX CHCTCM.
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