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Abstract: The anadysis and design of electro-
mechanic devices involve the solution of large sparse
linear systems, and require, therefore, high performance
algorithms. In this paper, the Schur complement method
with a parallel preconditioned conjugate gradient (PCG)
solver is introduced into two-dimensional parallel time-
stepping finite eement formulation to analyze a rotating
machine considering an electromagnetic field, externa
circuit and rotor movement. The proposed parallel solver
with two preconditionersis analyzed concerning its com-
putational efficiency and number of iterations. The
results of the simulation of a rotating machine are also
presented.

Key words: Paralld finite element method, coupled
problem, Schur complement method, movement
modeling.

1. Introduction

The numerical design of electromechanic devices is
a very complex task because many different physical
aspects should be considered. The performance of
electric equipment cannot be described only by
electromagnetic field equations because e ectromagnetic
field distribution depends on mechanical quantities,
characteristics of external circuits, etc. Induction
machines are the most obvious examples.

The finite element method (FEM) [1-2] is a well-
known technique for the solution of a wide range of
problems in science and engineering. However, a few
years ago, the simulation of complex structures
considering multiple aspects in the same set of equations
was restrictive due to the unavailability of sufficient
computer capabilities for data processing. However,
nowadays, thanks to the improvements in computer
architecture, the anaysis of complex eectromagnetic
systemsis more affordable.

Nevertheless, the anaysis of complex systems, e.g.
electric machine analysis considering the movement and
the voltage source requires a computing effort to solve
large sparse linear systems. These large linear systems
arise from the discretization by FEM. The solution to
these large equation systems are very resource-intensive
and time consuming, wherein the resources and time of

the simulation plays an important role for designers and
researchers. Therefore, the solution of a complex system
should be paralldised in order to speed up the numerical
computations with less computer requirements.

In this paper, we propose to solve a two-dimensional
paralle time-stepping finite dement problem using the
domain decomposition method (DDM) [3, 4]. The used
DDM is the Schur complement method with a paralléel
Krylov method, the parallel preconditioned conjugate
gradient method [3], which is currently one of the most
popular methods for the systems with real symmetric
positive definite matrices. Two preconditioners, and
namely Jacobi and Neumann-Neumann preconditioners
ae used in the solver agorithm to improve the
convergence behaviour. We present the numerical
behaviour of a parallel preconditioned conjugate gradient
solver with preconditioners for modeing an electric
machine with direct-coupled field formulations.

The paper is organized as follows. The next section
briefly describes the eguations and methods used to
introduce the formulation of the paralld time-stepping finite
dement method coupled with circuit and mechanical
equations. The third section describes the Schur
complement method and the way in which this method and
its iterative solver algorithm can be used to formulate and
solve a coupled problem. Section 4 callects numerical
results to illugrate the potentia of the method, and present
an induction machine with different mesh sze. Findly,
some extensions of the method are di scussed.

2. Formulation

The éectric machine is modelled in 2D using the
FEM to discretize the domain, which is based on the
weak formulation of partial differential equations, which
can be obtained by Maxwell's equations and the
weighted residua method [1]. The magnetic vector
potential formulation has been applied, and the temporal
derivatives are discretized by the backward Euler
scheme. The fidd and externa circuit equations are
combined together using the direct coupling method [2,
5, 6]. Equation (1) shows the matrix system of the field
equations[2, 5]:
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SA(t)+N%A(t)—PI(t):0, 0

Q%A(z)+RI(t)+L%I(f)=U(“)’

where A is the vector of magnetic vector potential, I is
the vector of currents in the windings, U is the vector of
voltages at the terminal of the winding, S is the matrix
related to permeability, N is the matrix related to electric
conductivity, Q is the matrix associated with flux
linkage, R is the matrix of d.c. resistance of windings, L
is the matrix of the end-windings inductances.

In order to simulate the rotation of the rotor in a two-
dimensional case, we used one of the most common
methods the so-called sliding surface technique with the
first order nodal interpolation method [7]. The
interpolation method is necessary when the fixed (stator)
and mobile (rotor) part of the mesh are non-conforming
because of variation of angular speed. The new angular
speed and rotor displacement are evaluated by the
mechanical oscillation equation [2, 7]:

5L

dr

where J,. is the rotor inertia moment, D, is the friction

damping coefficient, 7, is the electromagnetic torque, 7} is

the load torque acting on the mechanical axis, , is the rotor

speed, and «. is the rotor angular position. At each time

step, the electromagnetic torque is calculated via the
Maxwell's stress tensor [2] by the following relationship:

T :Lj{r{i(Bn)B—zLB%” dr, 3)
T

Hy Hy

d
r_Dra)r:T;a_T’_ar:a)’ 2
Ly 2

7

where L is the length of the domain in z-direction, and r
is the position vector linking the rotation axis to the
element dI', and T is a surface, which is placed in the
middle of the air gap, B is the magnetic flux density, i
is the permeability of vacuum, and # is the normal unit
vector to the surface.

3. Schur Complement Method

When the domain decomposition method is used, the
problem domain Q is to be divided into several sub-
domains in which the unknown potentials can be
calculated simultaneously, i.e. in parallel. The general
form of a linear algebraic problem arising from the
discretization of parabolic type problems defined on the
domain €2 can be written as Ka=b [2, 4], in more detail:
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where K € R is the mass matrix, b € R on the
right hand side of the equations, and a € R(M) contains

the unknowns. Here # is a number of unknowns.

Fig. 1. The partitioned finite element mesh and the assembled
results, the equipotential lines of magnetic vector potential
and the magnetic flux density vectors.

After the problem is partitioned into a set of Ng
disconnected sub-domains, as we can see in Fig. 1, and

the linear sparse system, Ka=Db is split into Ny
particular blocks [3, 4]
Kjf Kjrf a; _ bj (5)
Kl"/.j Kr,r/. arj bl"/

where j=1...N;, K is the positive definite sub-mass

i
matrix of the /" sub-domain, b; is the vector of the right
hand side defined inside the sub-domain. The sub-matrix

K =K jT contains the coefficients of /" sub-domain,
J J

which are connected to the interface boundary unknowns of
that region. The superscript T denotes the transpose.
Krr» and by express the coupling of the interface

unknowns. It should be noted, that it is much easier in
parallel computation if the sliding surface is used as an
interface boundary in the air gap, as it can be seen in Fig. 1.

Each sub-domain will be allocated to an independent
processor core, because the sub-matrix K ;; with the Kjr

K ; and the right-hand side b, are independent, i.e. they

can be assembled in parallel on distributed memory. Only
the matrix K 1 , and the vector b are not independent.
7 J



Schur-Complement Based Parallel Finite Element Analysis Coupled With Circuit ... 25

The matrix K and the vector b, are assembled after

interprocess data transfer because they are the assembly of
Krr, and bri , wherej istheindex of sub-domains.

The assembly and solution of the sub-matrices can
be performed paralely by independent processors.
However, the solution requires exchange of the interface
values, ar, between the processes in charge of the
various sub-domains. In many practica applications, the
preconditioned conjugate gradient (PCG) method is used
because of its simplicity and efficiency. The parallel
implementation of the preconditioned conjugate gradient
method can be presented by algorithm 1 [3].

In the parallel PCG algorithm [3], Ks and bs are the
mass matrix and right-hand side of the sub-domain, a is
the vector of unknown potentials, r istheresidual vector,
subscript T denotes the externa interface entries from
neighbouring sub-domains, M is the preconditioning
matrix [8], w and p are working vectors, and ¢ is the
specified error tolerance.

Algorithm 1. Parallel PCG Algorithm

1 Initidization: a, =0,

2 1,=b

3 Assembly local 1y with rg —entries® Ty,

4 fori=0,1,...do

5 w; =MT,,,

6 g =r"w,

7 Assembling g,

8 Assemblinglocal w; with wg entries® W,
9 ifi=0then

10 p=w,,
11 else

12 P =W;+(9 /9.1)Prs,
13w, =K.p,

14 b; = piTV_Vi ,
15 Assembling b,

16 Assemblinglocal w; with wg —entries® W;

17 & =ﬁ..1+(9i /bi)ﬁi!
871 =Fi-1+(gi /bi)V_Vi ,
19 if g; /g, <e then

20 return

In this case, two preconditioners have been used, the
Jacobi preconditioner [3], and the Neumann-Neumann
preconditioner [8]. The Jacobi preconditioner is one of
the simplest forms of preconditioning, in which the
preconditioner is chosen to be the diagonal of the matrix

M = gdiag(K S)El-l' The Neumann-Neumann precondi-

tioner is defined by approximating the inverse of the sum

of the local Schur complement matrices by the weighted
sum of the inverses[7],

NS
-3 T -1
M=8 D (Kgg - KlgKilK o |D;, ©
j=L
where Dj is the diagona weight matrix, which must

Ns
verify g D; =1.
j=1
To illustrate how the above mentioned domain
decomposition method with parallel PCG is implemen-
ted into the field-circuit coupled finite el ement method.

4. Application

In this section, to demondrate the operation of the
methods presented, a 4-pole 3-phase 3kW induction motor
with unskewed rotor dot fed by snusoidal voltage is tested.
The test problem and its parameters were described in [7],
and the GMSH modd was taken from the free GetDP
moddsin[9].

The domain being studied consists of one pole of the
machine, i.e. a 45° domain, as you can seein Fig. 1. The
anti-periodic boundary conditions are used to represent
the whole problem. In this simulation, 20 periods have
been calculated, and a period of the 50Hz voltage
excitation has been divided into 300 time steps.

The numerical experiments have been performed on
the platform composed of four CPUs Intel Xeon L5420.
Each CPU is a Dual-core processor running at 2.5 GHz.
It supplies 8x4GB RAM memory. The benchmark
presented in this paper consists in performing 10 times
the same operation in order to overcome the problem
caused by the finite precison of the clock. The
implemented program has been developed under the
Matlab computing environment in C language and in
own scripting language of Matlab.

We compare the implemented method for different
mesh size. Table 1 contains data on the partitioned finite
element mesh in various global eement sizefactors.

In order to use the same stop criterion for the

methods, e =108, the speedup was calculated by the
following formula,

Speedup, =Time, / Timey , (7)
where Time, is the running time in the case of the
smallest element size factor, and Time, is the running
time of the different size factor [10]. The efficiency was
calculated by the following formula

Efficiency = Speedupy / n, 8
where Speedup, is the speedup in the case of the

different element size factors, and n is the applied
processor cores [10].
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In Table 1, the number of degrees of freedom of the
unpartitioned problem, GDoF, the number of degrees of
freedom of one sub-domain, DoF, the number of
interface unknowns, CDoF are summarized.

The results on the performance of the parallel
program for all element size factors are reported in
Fig. 3-5. The speedups (Fig. 3—4) are computed using
the wall clock time of smallest problem (2900 GDoF) as
the reference point. The results show the speedup as high
as 9.8 with the Jacobi preconditioner, and 10.8 with the
Neumann-Neumann preconditioner. In both case, the
speedup is continuously increase until the 0.004 element
size factor, because the time of the interprocess
communication is relatively smaller, than the time of the
parallel PCG. This is not true for the largest test case,
when the subproblems are too big, and the operations of
the parallel algorithm are very time consuming. Further,
the memory requirement of the program is also very high
in this case. These conclusions are also supported by the
figures of efficiency, as you can see in Fig. 4 in the case
of Jacobi preconditioner, and in Fig. 5 in the case of
Neumann-Neumann preconditioner.

Table 1

Data on different finite element meshes used

Global element Number of processor cores
size factor CDoF (DoF)
(GDoF) 2 4 8
0.05 33 71 130
(2900) (1450) (725) (363)
0.025 (5832) 52 118 206
(2916) (1458) (729)
0.01 (23208) 102 (11604) 265 445
(5802) (2901)
0.008 128 (17711) 321 508
(35421) (8855) (4427)
0.006 155 (29362) 420 (14681) 679
(58724) (7340)
0.004 249 (64597) 644 (32299) 1140
(129194) (16150)
0.003 339 (112154) 802 (56077) 1343
(224308) (28039)

Fig. 6 and Fig. 7 show the running performance of
a preconditioned conjugate gradient solver, the number
of iterations versus the global element size factors at
three different of processor cores. The
interprocess communication hardly depends on the
number of interface unknowns (CDoF in Table 1) and
the number of applied processor cores. However, the
number of iterations shows the robustness of the
presented algorithm because the curves continuously
increase, so the solver is more or less independent from
the number of degrees of freedom and the number of
interface unknowns.
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Fig. 2. Speedup of parallel FEM procedure
with Jacobi preconditioner.
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Fig. 3. Speedup of parallel FEM procedure
with Neumann-Neumann preconditioner.
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Fig. 4. Efficiency of parallel FEM procedure
with Jacobi preconditioner.
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Fig. 5. Efficiency of parallel FEM procedure
with Neumann-Neumann preconditioner.
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Fig. 6. Number of iterations of PCG with Jacobi
preconditioner versus global element size factor.
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Fig. 7. Number of iterations of PCG with Neumann-Neumann
preconditioner versus global element size factor.
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Fig. 8-10 show the simulation results of an
induction machine. These Figures depict the first ten
periods of the simulation. Fig. 8 represents the transient
speed waveform. Fig. 9 shows the transient torque
waveform of the machine. Fig. 10 demonstrates the
transient current waveforms of the stator windings.

5. Conclusion

In this paper, a two-dimensional parallel finite- element
modeling of an induction machine has been presented
taking the rotor movement and field-circuit equation of the
windings into account. To study the performence of the
implemented method, different global finite element size
factors have been considered. Results of numerical
experiments on all mesh sizes compared. Furthermore, the
results obtained for the simulation of the induction machine
have also been presented.

The numerical experiments show that the work on
the implemented program depends, to a large extent, on
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the size of the problem. If the problem size is too large,
the efficiency of the computation decreases, so the
running performance of the implemented program
depends on the size of the problem. However, the
parellel PCG solver with preconditioners works
properly, as the presented results show.

It should be noted, that only a two-dimensional
benchmark has been used for the numerical tests. The
tests with more complex three-dimensional problems
will be the subject of a forthcoming work.
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PO3PAXYHOK ITOE€THAHUX KOJOBOI
TA MEXAHIYHOI MOJIEJII METOJIOM
CKIHYEHHUX EJJEMEHTIB
3 POBIIAPAJIEJIEHHAM PO3PAXYHKIB
I3 3ACTOCYBAHHAM JIOIIOBHEHHS ITYPA

Hanien Mapxkca, Miknom Kyamans

Po3paxyHox Ta TpOeKTyBaHHS eJeKTPOMEXaHITHUX TIpH-
CTpoiR mependavaroTh PO3R’A3YBAHHA BEJMKHUX JIHIHHUX PO3-
PIDKEHMX CHCTEM DiBHsHbL, IIO TOTPEGYIOTH 3aCTOCYBaHHSA
BHCOKOe(DeKTHBHUX alropHTMiB. Y i poloTi 3acTocoBaHo
Texuiky gonoeHenus IIlypa i3 mHOIepPeAHBO 3yMOBJICHHM
METOAOM CIPDKCHUX TPATIEHTIB A0 QHANI3Y PEXHUMY €JIEKT-
PHMYHOT MAIIMHU — PO3PaxyHKy eIeKTPOMATHITHOTO TIOJS, 30B-
HINTHKLOTO KoJla Ta MEXaHIKU poTopa. 3agaqy cHopMyTLOBAHO
y IBOBUMIpHIif TOCTAHOBLI METOIOM CKIHUEHHUX CJICMEHTIB 3
MPOBEICHHAM PO3MAapajie/ieHHs PO3PaXyHKIB. 3ampONOHOBAHY
METOANKY pO3MapajiefieHHs 3 JABOMa OllepaTopaMH IOIle-
peaHBOTO OOYMOBJIEHHS [IDOAHAJIi30BaHO CTOCOBHO ii obumc-
JIOBAILHOT €PeKTUBHOCTI Ta KiTbKOCTI iTepauiit. [IpoxemoncT-
POBAHO PE3YIILTATH MOJICIIIOBAHHS CJICKTPHYHOT MalluHH.
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