
TCSET'2010, February 23-27, 2010, Lviv-Slavske, Ukraine

180

Using Google Maps API along with technology .NET
Michał Konarski, Wojciech Zabierowski

 Abstract - This paper describes how Google Maps API
interface can be used together with .NET technology, on
example of a web portal for drivers.

 Keywords – Google Maps API, .NET, JavaScript.

I. INTRODUCTION

I am sure that everyone who use the Internet, has at least
once encountered Google Maps service. You have probably
checked it to see a satelite picture of Your home or a place
You wanted to visit. Basically it is used on companies's
private websites to point locations like “You can find us here”.
It can be easily achieved also on Your website with Google
Maps API. If You want to learn how to do that and how this
interface can be used to develop rich web applications, You
should read the following paper. It will cover the topic of
using Google Maps API together with technology .NET on
example of web portal for drivers.

II. GOOGLE MAPS (API)

Google Maps service was presented by Google corporation
on February 2005. It was combined with Google Local, which
offered relevant neighborhood business listings, maps and
directions. From the start, Google Maps service was only
available in U.S.A. and Canada. First European country to
receive maps and satelite pictures was United Kingdom.
Nowadays, it is available in majority of European countries,
Poland included. However, high resolutions pictures are only
available in big cities, where single trees or buildings can be
distinguished. When the service was first presented, it could
be only accessed through http://maps.google.com website. As
it popularity grown, Goggle company decided to share it with
whole world, by creating Google Maps API. It allows
developers to integrate Google Maps into their websites with
their own data points. It is free to use, but You need to acquire
an API key, which is bound to the website and directory
entered when creating the key. After having the key generated,
we can start building our application.

III. THE CONCEPT

Let’s say that we want to create a portal, where users can place
miscellaneous, valuable information for drivers like speed
cameras, road repairs, services and dangerous places. It could be
then discussed by the community of drivers, so it isn't an object of
advertising and would present a honest source of knowledge. This
paper isn't about creating a complete portal in .NET technology,
but only about using it with Google Maps service. So, I assume
that the reader is familiar with ASP.NET and basics of creating
web applications and I will focus on using Google Maps API.
You can take my suggestions of how your application should look,
but You are more than welcome to build a kind of Your own.

The foundation of our portal will be an interface, which will
enable the users to browse through the map's content and also
place information on it.

Pic. 1

I decided to use the TabContainer control from Ajax
Control Toolkit project, because we can place each section of
our interface in separate tab and access all of them instantly,
without refreshing the page. You can download this control
from the project's website (see references, position 3). For
example, when the first tab is active, we can browse through
the map's data and see detailed information about it. So You
should place some labels and textboxes in the tab to handle the
information. When the second tab is active, we could add
speed cameras. Here, You can place some checkboxes and
buttons, to get some information from the user about the speed
camera, like if it is active or in which province or town it is
placed. A simple button can commit the addition. It’s all up to
You. The TabContainer control combined with one object of
Google Map will do our interface. An important thing is, that
we will load the whole page just once and later do only partial
page refreshing by using UpdatePanel controls. This way, we
can avoid filling our map with all the data each time a user
will generate a postback.

To start, we need to include the Google Maps API script on
our asp page.

<script src="http://maps.google.com/maps?file=api&
v= 2.x&key=..." type="text/javascript"></script>

Listing 1
The key attribute value should be the one You have

generated before. Next, we need to place the map itself in a
div block,

 <div id="map"></div>
Listing 2
and then initialize it in JavaScript with a Gmap2 object and

set a starting point:
var map = new GMap2(document.getElementById("map"));
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
Listing 3
The setCenter function takes a GlatLng object (represents

coordinates) and zoom level. When You invoke the above
script, You should see Your first map.

IV. FILLING THE MAP

Now that we have our map, we need to fill it with overlays. We
will produce a WebService in .NET, responsible for retrieving

TCSET'2010, February 23-27, 2010, Lviv-Slavske, Ukraine

181

them from database and returning them to JavaScript function,
which will place them on the map. Database should contain
information about the position (latitude and longitude) and outlook
of each overlay. Our Webservice will be called OverlayService
and it should be declared like this:

[System.Web.Script.Services.ScriptService]
public class OverlayService :
 System.Web.Services.WebService
 {
 [WebMethod, ScriptMethod]
 public List<ServiceOverlay> GetDPoints()
 {
 ...
 }
 }
Listing 4
It is important to include the ScriptService attribute, so the

WebService could be called from JavaScript. Inside it we have
an example WebMethod called GetDPoints, which will get all
“dangerous places” from database. The implementation of
GetDPoints method is up to You, but in the end it should
return a List of ServiceOverlay objects.

 public class ServiceOverlay
{
 private string _lat;
 private string _lng;
 private string _id;
 private string _outlook;
 private string _type;

 public string lat
 {
 get { return _lat; }
 set { _lat = value; }
 }
 ...
 }
Listing 5
where _outlook is a custom overlay icon file name and

_type is our portal’s overlay type (speed camera, repair,
dangerous point,…). The ServiceOverlay object is not made
of other complex objects, so it’s properties are automatically
serialized to JSON format (understood by JavaScript) and we
don’t have to worry about it.

 Next, let’s look at JavaScript side of the procedure:
 var dpointsArray = [];
 function GetOverlays() {
OverlayService.GetDPoints(InitDPointsArray);
 }
Listing 6
First, we may want to declare an array for our overlays.

Next, we have a function GetOverlays which should be called
when the map is initialized. It invokes the GetDPoints
WebMethod and if succeeded, InitDPointsArray function is
called.

 function InitDPointsArray(result) {
 if (result != null) {
 dpointsArray = result;

 }
 InitOverlays();
 }
Listing 7
The result parameter is actually our list of ServiceOverlay

objects. After filling the dpointsArray, we can finally call the
InitOverlays function, which will fill the map.

V. MARKER MANAGER

Before we continue, I should say a few words about
MarkerManager class. It is used to manage visibility of
hundreds of markers on a map, based on the map’s current
viewport and zoom level. Our application is almost certain to
have lots of overlays, so it is recommended to use the
MarkerManager class, to make it more readable. Another
reason for using it, is that it will make our application faster,
because all overlays would not be rendered together.

Now, we can get back to InitOverlays function.
function InitOverlays()
{
 map=new GMap2(document.getElementById("map"));
 var i = 0;
 map.setCenter(new GLatLng(51.76, 19.52), 12);
 map.addControl(new GLargeMapControl());

 mgr = new MarkerManager(map);
 var batch = [];

 for (i = 0; i < dpointsArray.length; i++)
 {
 var Icon = new GIcon("", "", "");
 Icon.image = dpointsArray[i].outlook;
 Icon.iconSize = new GSize(30, 30);
 Icon.iconAnchor = new Gpoint(0, 30);
 Icon.infoWindowAnchor = new Gpoint(5, 2);
 Icon.transparent = “”;
 Icon.shadow = “”;

 var point=new GlatLng(
 dpointsArray[i].lat,
 dpointsArray[i].lng);
 batch.push(
 CreateMarker(point,
 dpointsArray[i].id,
 Icon,
 dpointsArray[i].type)
);
 }
 mgr.addMarkers(batch, 10);
 mgr.refresh();
 }

 function CreateMarker(point, id, Icon ,type) {
 var marker = new GMarker(point,
 {icon: Icon,});
 marker.value = id;
 return marker;}

TCSET'2010, February 23-27, 2010, Lviv-Slavske, Ukraine

182

Listing 8
At the beginning we initialize a GMap2 object, center the

map and add a standard map control. Then, we create a
MarkerManager object (variable mgr) and a batch array, which
holds the overlays for the MarkerManager. Next, we a loop
through the dpointsArray, adding markers returned by
CreateMarker function to the batch. Our markers have custom
icons, represented by GIcon object. Its properties are described
on Google Maps API Reference website (see references,
position 5). Finally, we fill the mgr variable with batch array ̧by
addMarkers function and refresh it to see the effect.

V . HANDLING EVENTS

To continue with construction of our user interface, we must
handle the events generated by the map and overlays. What we
want to do, is to distinguish the events based on active tab of
our TabContainer control. Among others, that is because we
don’t want to add repairs on the map while the speed cameras
tab is active and vice versa. When user clicks the map, a map
dispatcher should be called:

 function MapEventDespatcher(point) {
 if (active_tab_index == 0)
 {
 // do nothing
 }
 else if (active_tab_index == 1
 {
 //add speed camera at clicked point
 }
 else if (active_tab_index == 2
 {
 //add repair at clicked point
 }
 ... // and so on
 }
Listing 9
You can find out a TabContainer control’s active tab index

through a function that is called on client-side on each tab
change. It must be previously defined in a TabContainer
declaration.

ASP.NET:
<ajaxCT:TabContainer ID="TabCtr1" runat="server"
 OnClientActiveTabChanged
 ="Client_ActiveTabChanged" >
JavaScript:
function Client_ActiveTabChanged(sender,e) {

active_tab_index=sender.get_activeTabIndex();
}
 Listing 10
Now, we need to assign the dispatcher to the map’s “click”

event with GEvent object.
GEvent.addListener(map, "click",
 function(marker, point) {
 MapEventDespatch(point);
 });
Listing 11
An overlay event dispatcher may look like this:
 function OverlayEventDespatcher(id) {
 if (active_tab_index == 0)
 {
 // browse clicked overlay
 }
 else if (active_tab_index == 1)

 {
 // remove speed camera
 }
 else if (active_tab_index == 2)
 {
 // remove repair
 }
Listing 12

V I. COMMUNICATION

To be able to respond properly to each kind of event on
your ASP page, You can use hidden fields of form. For
example, if an overlay is clicked, You can save its ID in a
hidden textbox and then programmatically press a ASP button
from JavaScript:

var hidden_txt =
 document.getElementById("hidden_txt");
var hidden_btn =
 document.getElementById("hidden_btn");

if (hidden_txt != null && hidden_btn != null)
{
 hidden_txt.value = ID;
 hidden_btn.click();
}
Listing 13
Using hidden field is the most popular way to

communicate between JavaScript and .NET. Another
possibility is the one mentioned before. You can respond
to control’s events by defining JavaScript functions that
will handle the events. If You would like to call some
JavaScript function from code-behind in .NET, You can
use the RegisterClientScript method of ScriptManager
control, which will invoke the script during page load.

Our portal is using WebService and WebMethods, because
it is very fast way of exchanging data and can be done in the
background. However, if You want to send some small
amount of information from .NET to JavaScript, You can also
use ScriptManager control and it’s method RegisterArray to
register an array on the page and use its values from the script.

VI I. CONCLUSION

When You decide to use Google Maps API in Your
application, then You should come up with o good plan of
placing the overlays on the map and handling events. It is most
of the work You will have to do. As it was shown in this
paper, building web applications in .NET technology based on
Google Maps service, is not a difficult process. It is basically
about the communication between JavaScript and .NET and it
can be easily established with usage of a WebService, where
data serialization is done automatically.

I . REFERENCES

http://www.google.com/corporate/history.html ,
http://en.wikipedia.org/wiki/Google_Maps ,

http://www.codeplex.com/Wiki/View.aspx?ProjectName=Ajax
ControlToolkit ,
http://gmaps-utility-
library.googlecode.com/svn/trunk/markermanager/release/docs/r
eference.html ,
http://code.google.com/intl/pl/apis/maps/documentation/referen
ce.html#GIcon

