S. Karas
Lublin University of Technology

DISCRIMINETING BETWEN GREEN
AND INFLUENCE FUNCTIONS

© Karas S, 2010

Y craruuni Hemae K0AHOI BiAMIHHOCTI Mik yHKIicl0 BILIUBY i ¢pyHkuiero I'pina, npore
AHATI3YI0YM TMHAMIYHI MpolecH, MOKJIMBO BKA3aTH HA IXHIO iCTOTHY pi3HUII0. OCHOBOIO AJ151
PO3pi3HeHHA MiK HUMH CJIYrye 3HayeHHs (yHkmii minbHocti BanTaxky. Iloka3zaHo nBa
npukiaan ¢pyukuii I'pina qus mpocroi 6anku Bernoulli 3 B'a3konpy:kKHHMH BJIACTHBOCTSIMH
marepiaay (moxei Boiita i MakcBeia).

Kuarouogi cioBa: ¢pynknisa I'pina, pyHkuii mijJibHOCTI BaHTaKYy.

In statics there is no distinction between influence function and Green function, while
analysing dynamical processes it is possible to indicate a significant difference. The basis for
the discriminating between them comes from the meaning of load function density. Two
examples of Green function for simply supported Bernoulli beam with viscoelastic properties
of its material (Voigt and M axwell models) are shown here.

Keywords: Green function, load function density.

Introduction. Green function, thanks to it superpositional properties, seems to be the crown of most
engineering linear problems. Even now, when numerical methods domination is unquestioned, this
analytical tool still plays an important role.

The meaning of Green function is strongly connected with Laplace potential and was first formulated
by George Green [1] (1793 - 1841). Volterraand Lauricdlain several papers (for example [2]) used Green
function in integral form as a tool for boundary problem investigations. The basis for Green function
theory isto befound in Love[3], Trefftz [4], Kellog [5], Gurtin [6], Wladimirov [7]. thework by Zielinski
[8], it is worth recalling here where significantly complicated boundary problems were solved by means of
boundary Green functions.

The aim of this consideration is to indicate and define the criterion for discriminating between Green
function and influence function. Two simple visco-elastic prablems in case of Bernoulli beam are enclosed
as examples.

1. Definition of dynamical influence surface. In statics, for plate bridge caring decks for example,
the influence surface converges with the Green function for any assumed boundary problem. The opposite
situation takes place when the dynamical or quasi-statical process is analysed, in cases of which we can
precisay define influence function as the limitation of Green one.
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Fig. 1. Resultant force taken over open subregion B
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The understanding of load density is basic for this consideration. The following definition of load
density is assumed -

®
r . Q
= lim = , 1
q veoV @
where Qis the resultant force taken as integral over open subregion B (Fig. 1)
I ‘r
Q = (y1/9 day da,... day , 2)
B
and the adequate measure of subregion B ,volume for example, fulfils formula
V = (/g day da ... dayg ; ©)
B

and where \/6 - stands for Jacobi determinant of arbitrary coordinate system transformation to q;
(=1,2,3, .... K) system.
For three dimensional e astokinetic problems, load density depends on fourth arguments (k=4), i.e.
geometrical coordinates q,,q,,d, and q, =g, =t which stands for time axis.
In general case of three dimensional geometrical space and for an arbitrary curvilinear coordinate
system characterised by basic vectors é ; and for an arbitrary point of the body load density could be

presented as follows

ry_ & r $ g
Q(t) =a CIm(t) =a Clm(t)_l'm ) (4)
m=1 m=1 |gm|

where q,, - are physical components.

When density depends on some of possible arguments, i.e. only on geometrical ones for example, then
we get partial densities, so it could be: linear, surface or volume density. Considering dependence on all
arguments the following definition of influence function can be stated

The complete influence surface of analyzed mechanics' magnitude is its geometrical image of the
structure answer to theload in the form of Dirac’s impulses obeying all arguments

b= b, -6y 03 . oy - ) . o - ). 0
where m=1,2,3, (k - 1)
Considering the load function applied to plate structure in Cartesian coordinate system
% =ir3 q(X17X21t) (6)
where 13 is normal to the plate plane, q(xl,xz, t) stands for partial density, in detail it is surface density
depending on time parameter. The correspondence between surface density ¢ and density ¢, could be

expressed by
t

q= ¢y (%1, %2,03)das, )
0
AR (I

O —h(t)."tq, ©)

where h(t) is the Heavisidea's step function.

Using the definition formulated above, we search for dynamical influence flexure function as an
effect of gactionintheform
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q=tc‘yl(><1- XI)d(Xz- X;)d(h'qg)dq:CIxch; ©)
0

where
Ox :d(Xl' Xi)d(xz' X;) (10)
and
qt=h(t-t*). (11)
Expression (9) shows the connection between influence surface and Green function for which
o =dlt-t). (9.)

Per analog we can find such relations for linear densities in beam problems, too.

2. Examples of dynamical Green functions
Assumptions:
- thesimple Bernoulli beam model is undertaken,
- the materia is homogenous and isotropic, is characterized by visco-eastic Voigt and Maxwell

models,
- by virtue of [10], [11] is taken that L :IT, (12
m m
- theinitial conditions are uniform and for each function at t=0, its values are zeros,
- load density function is of the form
q:d(x-x*)d& -t*). (13)

Notation:
m |, [, m- generalized Lamé elastic and viscous material constancies,
E,n- Y oung and Poisson modules,

w, I, A, J - adequately are: flexure, span, area of cross-section, principal second moment of
beam cross-section areg,
r - material volume mass density,
X, t — Cartesian coordinate along beam span, time,
X t

XZT, t :t—, WZIﬂ - dimensionless coordinates and flexure,

€+Smn 9, |y - Strain, stress tensors and its linear invariants,

C

g;; - Metric tensor,

(o]

ki Bkl

.8, D - dastic and viscous stiffness tensors,

(= "]"0 - time derivative,
f(t) - Carson-Laplace transformation of original function f(t)
¥
f(p)=poy t Jexp(- pt )t (14)
0

p - isthetransformation complex parameter.

2.1, Voigt model
Voigt congtitutivereation is assumed in form

K K
sij =Cjj ex +Dj; &y, (15)
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which for isotropy and according to (12) could be written as

sij = 2me; + gy J+( 91418 gij = 2(me;; + )+

n
o (9,+4,) gij,» (16)
and after applying (14) we arrive at

~ A\ O~ n - 0
S ij = 2(m+ pm)geij + Ji gij +. (17)
] -2 2}
In case of pure bending the normal stresses are given by
$33 = 2(m+ pi)(L+n ) €35 = (E + IOE) €33, (18)
this implies beam equation of motion as below
4~ .
EJ(L+py )'"—\;VH Ap*W=3; y ==, (19)
Tx E
which in dimensionless coordinates becomes to
\V/ ~  ~ 2 T A |3
1+py )+ pW=qga, ty =12 |——, a=—. 20
(L+py )+ pW=4 0 =1" V5 = (20)

The solution is searched by means of Fourier series presentation of transformed unknowns as well as
transformed |oad function (13)

¥
Wk, p)= & W (p)sin(ipx), (21.1)
=12
¢
glx,p)= a d;(p)sin(jpx), (21.2)
=12
when
;(p)= p sin(jpx” el pt”). (22)
Substituting (21) into (19) we arrive at
Wiy =— q; 23)
p? +(jp)* L+ py )
VR 6
where PL2=- (JF;) y gli + (249
3 o

arereal and negative singularities.
By virtue of the residuum theorem the originals are found in the form

g ap(pt) Qa9 a_ (. ap(plt - to)) . exp(palt - t,))0
= R H =—_ +. (25
" maz.l b (b mp P2l oy ZSn(JpX‘))g o o 5 &

Substituting (25) into (21.1) the dynamical Green function of beam flexure is obtained.

2.2, Maxwell body
The constitutive law in the Maxwell body case has theform

K K
sij +Bj S =Cjj ex, (26)
which inisotropy and (12) becomes
aes o) 6 O
; Sij . 1J+ n ?Jf—}%gij} (27)
m mg lingm mg " 5
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For beam transformed normal stresses we have

~ €33 _ €33

S 33 =2ml+n =E , c

m=2n{len) 2 =B
Using (28) the beam equation could be written down as
w1+ pc)'1+ pAW =ga. (29)
Again, the expansion into series (21.1-2), (22) take place and leads us to Fourier coefficients as
below

3|3

(28)

- 1+ pc ~ 1+ pc

W, =3; a =g a :
o p3c +p? +(jp)* P (p- pu)(p- p2)(p- p3)

(30)

1 . .
The magnitude - — is not aroot of the dominator of (30) expression. Assuming that the roots are
C

single we have two variants of the solution:
a) all threeroots arereal, then using the residuum theorem we obtain

i) £ Le ot
Wi _Esn(lpxo)m?l?(p(pm(t -tO)) (pm' pn)(pm' pk) >

when ki mtn end k,m,n=1,2, 3;
b) one root is real and negative, p,for example, and two others are complex conjugated, i.e.
P, =E)3 =a+ib, moreover a <0; then we get

- 1+ pc

Wi =§; a . (32)
(p- p1) (p2- 2pa+a2+b?)
Retransforming (32) we arrive at
- o 1+ pcC
w; —asm(Jpxo)éap(pl(t 'to))(pl)g_ 2 pyralib?
5
explalt -to)) (((1+ac)(a ] p1)+b2C)Sin(b(t “t,))- b{+ac)cos(bt -to)))Z (33)

blo2+(a - py)? :

Substituting (31) or (33) into (20.1), the dynamical Green function of the beam characterized by
Maxwell model becomes derived.

Conclusions. The criterion for discriminating between Green and influence functions has been
formulated on the basis of load density form. In both cases the load density is presented by Dirac deltas
product, but in the case of influence function the deltas product is related to partial density proper to the
particular mechanical problem. In the case of Green function the load density function is ‘pure’ Dirac
deltas product according to all considered arguments.

Dynamical Green function or aternatively dynamical influence functions are serviceable only when
thereally existing damping is taken into consideration. This is available when along with elastics viscosity
is taken into account.

In general, in practice, the lack of appropriate material constant values is observed. Many
experimental results were derived for different sample dimensions and shapes, also by different and
inconsistent each to other laboratory tests[12]. Probably thisis the reason of the absence of visco-elastics
in codes and engineering design generally and especially in everyday road pavement material and problem
treats.
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