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У статиці немає жодної відмінності між функцією впливу і функцією Гріна, проте 
аналізуючи динамічні процеси, можливо вказати на їхню істотну різницю. Основою для 
розрізнення між ними слугує значення функції щільності вантажу. Показано два 
приклади функції Гріна для простої балки Bernoulli з в'язкопружними властивостями 
матеріалу (моделі Войта і Максвела). 

Ключові слова: функція Гріна,  функції щільності вантажу. 

In statics there is no distinction between influence function and Green function, while 
analysing dynamical processes it is possible to indicate a significant difference. The basis for 
the discriminating between them comes from the meaning of load function density. Two 
examples of Green function for simply supported Bernoulli beam with viscoelastic properties 
of its material (Voigt and Maxwell models) are shown here. 
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Introduction. Green function, thanks to it superpositional properties, seems to be the crown of most 
engineering linear problems. Even now, when numerical methods domination is unquestioned, this 
analytical tool still plays an important role.  

The meaning of Green function is strongly connected with Laplace potential and was first formulated 
by George Green [1] (1793 - 1841). Volterra and Lauricella in several papers (for example [2]) used Green 
function in integral form as a tool for boundary problem investigations. The basis for Green function 
theory is to be found in  Love [3], Trefftz [4], Kellog [5], Gurtin [6], Wladimirov [7]. the work by Zielinski 
[8], it is worth recalling here where significantly complicated boundary problems were solved by means of 
boundary Green functions. 

The aim of this consideration is to indicate and define the criterion for discriminating between Green 
function and influence function. Two simple visco-elastic problems in case of Bernoulli beam are enclosed 
as examples. 

 
1. Definition of dynamical influence surface. In statics, for plate bridge caring decks for example, 

the influence surface converges with the Green function for any assumed boundary problem.  The opposite 
situation takes place when the dynamical or quasi-statical process is analysed, in cases of which we can 
precisely define influence function as the limitation of  Green one.  

 

δ

B

Q

B

B

 
 

Fig. 1. Resultant force taken over open subregion B̂  



 399 

The understanding of load density is basic for this consideration. The following definition of load 
density is assumed - 

V
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ˆ
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0ˆ
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→
=

r  ,        (1) 

where Q̂ is the resultant force taken as integral over open subregion B̂ (Fig. 1) 
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and the adequate measure of subregion B̂ ,volume for example, fulfils formula 

        k
B

dddgV θθθ ...ˆ 21∫̂=  ;       (3) 

and where g  - stands for Jacobi determinant of arbitrary coordinate system transformation to jθ  

(j=1,2,3, .... ,k) system. 
For three dimensional elastokinetic problems, load density depends on fourth arguments (k=4), i.e. 

geometrical coordinates 321 ,, θθθ and t4k =θ=θ  which stands for time axis. 
In general case of three dimensional geometrical space and for an arbitrary curvilinear coordinate 

system characterised by basic vectors jgr  and for an arbitrary point of the body load density could be 

presented as follows  
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where mq - are physical components. 
When density depends on some of possible arguments, i.e. only on geometrical ones for example, then 

we get partial densities, so it could be: linear, surface or volume density. Considering dependence on all 
arguments the following definition of influence function can be stated  

The complete influence surface of analyzed mechanics’ magnitude is its geometrical image of the 
structure answer to the load in the form of Dirac’s impulses obeying all arguments  
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where ( )1k,....,3,2,1m −=     
Considering the load function applied to plate structure in Cartesian coordinate system  

( )txxqiq ,, 2133
rr

=      (6) 

where 3i
r

is normal to the plate plane, ( )t,x,xq 21  stands for partial density, in detail it is surface density 

depending on time parameter. The correspondence between surface density q  and density ρq could be 

expressed by 
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where ( )tη  is the Heavisidea’s step function. 
Using the definition formulated above, we search for dynamical influence flexure function as an 

effect of q action in the form 
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where   

 ( ) ( )*
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and            
( )*ttqt −= η .                    (11) 

Expression (9) shows the connection between influence surface and Green function for which  

( )*ttqt −= δ .           (9.1) 

Per analog we can find such relations for linear densities in beam problems, too. 
 
2. Examples of dynamical Green functions 
Assumptions: 

- the simple Bernoulli beam model is undertaken, 
- the material is homogenous and isotropic, is characterized by visco-elastic Voigt and Maxwell 

models, 

- by virtue of [10], [11] is taken that             
µ
λ

µ
λ

ˆ

ˆ
= ,  (12) 

- the initial conditions are uniform and for each function at t=0, its values are zeros, 
- load density function is of the form   

 ( ) ( )** ττδξξδ −−=q .                          (13) 

Notation: 
µλλµ ˆ,ˆ,,  - generalized Lamé elastic and viscous material constancies, 

ν,E - Young and Poisson modules, 
w, l, A, J  - adequately are: flexure, span, area of cross-section, principal second moment of 

beam cross-section area, 
ρ - material volume mass density, 
x, t – Cartesian coordinate along beam span, time, 

ot
t,

l
x

=τ=ξ , 
l
w=ω  - dimensionless coordinates and flexure, 

11mnij I,J,,σε  - strain, stress tensors and its linear invariants, 
kl

ij
kl

ij
kl

ij D,B,C  - elastic and viscous stiffness tensors, 

ijg - metric tensor, 

t
)()(

.

∂
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=  - time derivative, 

( )tf~  - Carson-Laplace transformation  of original function ( )τf  
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p  - is the transformation complex parameter. 
2.1. Voigt model 
Voigt constitutive relation is assumed in form 
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ijij DC εεσ &+= ,    (15) 
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which for isotropy and according to (12) could be written as 
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and after applying (14) we arrive at 
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In case of pure bending the normal stresses are given by 
( )( ) ( ) 333333

~ˆ~1ˆ2~ εενµµσ EpEp +=++= ,    (18) 
this implies beam equation of motion as below 
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Ê=ψ ,    (19) 

which in dimensionless coordinates becomes to  
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The solution is searched by means of Fourier series presentation of transformed unknowns as well as 
transformed load function (13) 
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Substituting (21) into (19) we arrive at 
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are real and negative singularities. 
By virtue of the residuum theorem the originals are found in the form 
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Substituting (25) into (21.1) the dynamical Green function of beam flexure is obtained. 
 
2.2. Maxwell body 
The constitutive law in the Maxwell body case has the form 
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which in isotropy and (12) becomes  
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For beam transformed normal stresses we have 
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Using (28) the beam equation could be written down as 

( ) aqppIV ~~1~ 21 =++ − ωχω .    (29) 
Again, the expansion into series (21.1-2), (22) take place and leads us to Fourier coefficients as 

below 
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The magnitude 
χ
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 is not a root of the dominator of (30) expression. Assuming that the roots are 

single we have two variants of the solution: 
a) all three roots are real, then using the residuum theorem we obtain 
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when nmk ≠≠   end   k, m, n = 1, 2, 3; 
b)  one root is real and negative, 1p for example, and two others are complex conjugated, i.e. 

β+α== ipp 32 , moreover 0<α ; then we get 
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Retransforming (32) we arrive at 
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Substituting (31) or (33) into (20.1), the dynamical Green function of the beam characterized by 
Maxwell model becomes derived.  

 
Conclusions. The criterion for discriminating between Green and influence functions has been 

formulated on the basis of load density form. In both cases the load density is presented by Dirac deltas 
product, but in the case of influence function the deltas product is related to partial density proper to the 
particular mechanical problem. In the case of Green function the load density function is ‘pure’ Dirac 
deltas product according to all considered arguments. 

Dynamical Green function or alternatively dynamical influence functions are serviceable only when 
the really existing damping is taken into consideration. This is available when along with elastics viscosity 
is taken into account. 

In general, in practice, the lack of appropriate material constant values is observed. Many 
experimental results were derived for different sample dimensions and shapes, also by different and 
inconsistent each to other laboratory tests [12].  Probably this is the reason of the absence of visco-elastics 
in codes and engineering design generally and especially in everyday road pavement material and problem 
treats.  
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