ВЛАСТИВОСТІ ПАСИВУВАЛЬНИХ ШАРІВ У ГЕТЕРОСТРУКТУРАХ (АНОДНИЙ ОКСИД, CdTe)/HgCdTe

І. Рудий^{*a*}, І. Лопатинський^{*a*}, І. Курило^{*a*}, М. Фружинський^{*a*}, І. Вірт^{*b*}, Ф. Сизов^{*c*}

^а Національний університет "Львівська політехніка" вул. С. Бандери, 12, 79013, Львів, Україна ^bДрогобицький державний педагогічний університет імені Івана Франка вул. Івана Франка, 24, 82100, Дрогобич, Україна

^с Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України

пр. Науки, 41, 03028, Київ, Україна

(Отримано 26 вересня 2006 р.)

Під час виготовлення фотодетекторів на основі $Hg_{1-x}Cd_xTe$ використовують гетероструктури цих матеріалів у вигляді тонких шарів, наприклад анодний оксид $Hg_{1-x}Cd_xTe$ та $CdTe/Hg_{1-x}Cd_xTe$. Досліджено гетероструктури – пасивувавальний шар анодного оксиду, пасивувальний шар CdTe (3 полікристальною і монокристальною структурами) та активну монокристалічну плівку $Hg_{1-x}Cd_xTe$, отримані методом молекулярно-променевої епітаксії. Структуру пасивувальних шарів досліджено методом дифракції електронів високих енергій на відбиття. Для вивчення впливу структури пасивувального покриття на властивості активного шару застосовано метод Х-променевої дифрактометрії. Визначено сталу кристалічної решітки активного шару плівки. Механічні властивості гетероструктур досліджено методом мікротвердості. Подано також електрофізичні та фотоелектричні параметри епітаксійних плівок $Hg_{1-x}Cd_xTe$.

Ключові слова: гетероструктура, структура, дислокації невідповідності, пластичні напруження, фотоелектричні параметри.

PACS: 68.35. - p: 68.55.Ce; 68.60.Bs **УДК:** 621.315.592 + 548.51 + 537.311.33

Вступ

 $Hq_{1-x}Cd_xTe$ належить до напівпровідникових матеріалів, які важко піддаються обробленню, що пов'язано з особливостями механічних властивостей і насамперед з його високою пластичністю [1]. Різні стандартні технологічні операції, необхідні для створення напівпровідникових пристроїв, наприклад механічне оброблення поверхні, термооброблення, іонна імплантація, нанесення пасивувальних покриттів та інші операції, супроводжуються утворенням у приповерхневому шарі та в об'ємі матеріалу значної кількості дефектів деформаційного походження. Ця проблема особливо актуальна і під час вирощування епітаксійних плівок (ЕП). Унаслідок невідповідності сталих кристалічної решітки матеріалу ЕП та підкладки, ЕП та пасивувального покриття, в області гетеромежі виникають пружні напруження, релаксація яких спричиняє утворення сітки дислокацій [2, 3]. Крім того, однією з основних причин виникнення напружень є відмінність коефіцієнтів термічного розширення (КТР) матеріалів ЕП та пасивувального покриття.

Прикінцеві стадії вирощування епітаксійних плівок (ЕП) $Hg_{1-x}Cd_xTe$ методом молекулярнопроменевої епітаксії (МПЕ), включаючи і ті стадії, які відбуваються поза ростовою камерою (наприклад, нанесення пасивувальних шарів електрохімічним способом – анодних оксидів (АО)), істотно впливають на структуру та властивості приповерхневих шарів. Своєю чергою, приповерхнева область істотно впливає на електричні та гальваномагнітні властивості напівпровідникових твердих розчинів на основі HgTe [4]. У багатьох публікаціях, наприклад в [5], що розглядають пасивацію $Hg_{1-x}Cd_xTe$, показано що варизонні шари $Hg_{1-x}Cd_xTe$ з підвищеним вмістом CdTe або шари чистого CdTe, а також шари CdZnTe теж можна використати для пасивування поверхні. Збільшення ширини забороненої зони з боку пасивувального шару (ПШ) на гетеромежі з плівкою вузькощілинного напівпровідника створює вбудовані поля, які зменшують стік нерівноважних носіїв заряду до поверхонь із підвищеною швидкістю рекомбінації. Отже, можна збільшити ефективний час життя нерівноважних носіїв заряду (HH3) в активній (робочій) зоні структури.

Мета роботи – дослідження структури пасивувальних шарів АО, отриманих електрохімічнии способом поза ростовою камерою та структури пасивувальних шарів CdTe, осаджених в єдиному процесі МПЕ, та впливу пасивувальних шарів на механічні, електрофізичні та фотоелектричні властивості ЕП $Hg_{1-x}Cd_xTe$.

I. Експеримент

ЕП $Hg_{1-x}Cd_xTe$ отримані за допомогою МПЕ на підкладках GaAs (013) з застосуванням буферних

шарів за температури 463 К. На плівки з робочим складом x = 0, 21 - 0, 24 та x = 0, 45 - 0, 50 електрохімічним методом поза ростовою камерою наносили ПШ АО. На частину плівок з робочим шаром складу x = 0,220 нарощували монокристальний шар CdTe, а на частину плівок такого самого складу нарощували полікристальний шар CdTe. Товщина ПШ $d \approx 1$ мкм. ПШ CdTe різної структури осаджували безпосередньо в ростовій камері установки МПЕ. Рентгенодифракційні дослідження отриманих гетероструктур виконували на Х-променевому дифрактометрі ДРОН – 3.0 (CuK_{α} -випромінювання) за схемою $\theta - 2\theta$. Структурну досконалість приповерхневих шарів досліджували методом дифракції електронів високих енергій на відбиття (ДЕВЕВ) на електронографі ЭГ – 100Å в інтервалі пришвидшувальних напруг 60 – 80 кВ. Мікромеханічні властивості гетероструктур досліджували методом мікротвердості (МКТ). Навантаження на індентор становило $(2 - 20) \times 10^{-2}$ Н, час статичної дії навантаження – 10 с.

Температурні залежності коефіцієнта Холла одержували шестизондовим методом у магнітних полях 0, 1 – 1 Тл в інтервалі температур 40 – 300 К. Температурні залежності часу життя ННЗ в інтервалі 40 – 300 К – методом релаксації фотопровідності,

збудженої світлодіодом ($\lambda = 900$ нм) за тривалості імпульсу $\Delta t_{\rm imn.} = 5$ мкс.

II. Результати та обговорення:

1. Структурні дослідження Методом ДЕВЕВ досліджено структуру пасивувальних шарів, отриманих анодним оксидуванням. На електронограмах від AO, отриманих на ЕП $Cd_xHg_{1-x}Te$ складів x == 0, 20 - 0, 23, спостерігали декілька розмитих дифузних півкілець (рис. 1, а). Електронограми від AO на ЕП складу x = 0, 45 - 0, 50 вказують на його полікристальну структуру (рис. 1, б).

Розмір кристалітів, які формують АО на $Cd_xHg_{1-x}Te$ складу x = 0,45, оцінений за розширенням півкілець, становить близько 60Å. Розміри кристалітів АО на плівках зі складом x = 0,20 є меншими. Причину того, що розміри кристалітів, які формують АО на ЕП складу x = 0,20 є меншими, ніж розміри кристалітів АО на ЕП складу x = 0,45, ми поки що не встановили. Процеси оксидування поверхні $Cd_xHg_{1-x}Te$ є доволі складними. Виявляється, що $Cd_xHg_{1-x}Te$ оксидується не просто як суміш двох бінарних сполук. Для більш поглибленого вивчення цих процесів необхідні окремі дослідження структури АО бінарних сполук CdTe та HgTe.

Рис. 1. Електронограми плівок анодного оксиду, нанесеного на $Cd_xHg_{1-x}Te$ різного складу: x = 0, 2 (a), x = 0, 45 (б)

Як показано в [6–9], основними компонентами AO на поверхні монокристальних зразків $Cd_xHg_{1-x}Te$ (x = 0, 19) є $CdTeO_3$, TeO_2 , HgTe, $HgTeO_3$ та інші складні оксиди. На основі електронограми (рис. 1, б) від AO на поверхні ЕП $Cd_xHg_{1-x}Te$ розраховані міжплощинні відстані d_{hkl} цього оксиду. У табл. 1 зіставлено результати електронографічних досліджень із табличними даними щодо одного з компонентів оксиду – $CdTeO_3$ та табличними даними щодо CdTe – бінарної сполуки, яка є складовою твердого розчину. Припустивши, що основною складовою AO є CdTeO3 і що він знаходиться в дрібнодисперсному монокристальному стані, для розрахунків напружень в системі AO/ $Cd_xHg_{1-x}Te$ можна використати значення параметра ґратки $CdTeO_3$.

Методом Х-променевої дифрактометрії досліджено гетероструктури CdTe/HgCdTe з різними структурами пасивувальних шарів CdTe.

Анодний оксид								
(експериментальні)			$CdTe($ табл $)^*$			$CdTeO_3($ табл $)^*$		
Номер			Номер			Номер		
кільця	d_{hkl}	hkl	кільця	d_{hkl}	hkl	кільця	d_{hkl}	hkl
1	3,75	111	1	3,742	111	1	3,10	111
2	2,17	-	2	2,290	220	2	2,70	200
3	1,85	220	3	1,954	311	3	$1,\!89$	220
4	1,36	400	4	1,619	400	4	$1,\!62$	311
5	$1,\!22$	331	5	1,488	331	5	1,55	222
6	-	-	6	1,323	422	6	$1,\!34$	400
7	-	-	7	1,247	511	7	1,23	331

* POWDER DIFFRACTION FILE, INORGANIC PHASES, 1985, International Centre for Diffraction Data

Табл. 1. Результати електронографічних досліджень плівок AO на поверхні $Cd_xHg_{1-x}Te$ (x = 0, 45)

На рентгенодифрактограмах (рис. 2) бачимо характерні піки структури цинкової обманки, в яку кристалізуються твердий розчин $Hg_{1-x}Cd_xTe$ та CdTe. Орієнтація плівки повністю повторює орієнтацію підкладки GaAs (013). Піки від робочого шару плівки $Hg_{1-x}Cd_xTe$ складу x = 0,220 та ПШ CdTe накладаються один на одного. У випадку ПШ зі структурою монокристала їх вдалося розділити та обчислити сталу решітки робочого шару плівки $a_{HgCdTe} = 6,4661$ Å. У випадку ж пасивувального шару CdTe зі структурою полікристала, маємо справу з дуже розмитим піком від CdTe, який накладається на пік робочого шару плівки. Це свідчить про те, що на довжині хвилі рентгенівського випромінювання $\lambda = 1,54056$ Å можна говорити про "ентгено-

аморфність" цього шару. Електронографічні дослідження, проведені нами за методикою ДЕВЕВ, показали, що структура пасивувального шару є полікристальною і сформованою кристалітами розмірами 40 – 70Å. Стала решітки a_{HgCdTe} робочого шару плівки HgCdTe, який знаходиться під пасивувальним полікристальним шаром, становить 6, 4658Å. Це значення є ближчим до табличного значення сталої решітки об'ємного матеріалу $Hg_{1-x}Cd_xTe$ складу x = 0, 22. Так, згідно з табличними даними для монокристальних зразків $Hg_{1-x}Cd_xTe$ (x = 0, 22) у вигляді порошку та відпалених тривалий час в парах ртуті стала решітки $a_{HgCdTe} = 6, 4641Å$ [10]. Результати наших рентгенодифракційних досліджень ЕП наведено в табл. 2.

ſ	Підкладка	$E\Pi Hg_{1-x}Cd_xTe - N^{\circ}1$	Пасивувальний шар полі- $CdTe$		
	$a_{GaAs} = 5,6530 \text{\AA}$	(x = 0, 22)	<i>а_{СdTe}</i> – не встановлено у зв'язку		
		$a_{HgCdTe} = 6,4658 \text{\AA}$	з високою дисперністю		
	Підкладка	$E\Pi Hg_{1-x}Cd_xTe - N^22$	Пасивувальний шар моно-CdTe		
	$a_{GaAs} = 5,6530 \text{\AA}$	(x = 0, 22)	$a_{CdTe} = 6,4882 \mathring{A}$		
		$a_{HgCdTe} = 6,4661 \mathring{A}$			

Табл. 2. Результати рентгенодифракційних досліджень

Рис. 2. Рентгенодифрактограми гетероструктур $GaAs/Hg_{1-x}Cd_xTe/CdTe$: пасивувальний шар CdTe зі структурою монокристала (а) та полікристала (б) 2. Напруження, механічні властивості На нашу думку, монокристальний пасивувальний шар CdTe більше впливає на робочу плівку $Hg_{1-x}Cd_xTe$, ніж полікристальний пасивувальний шар CdTe – спостерігаємо невеликий розтяг решітки в площині (013). Напруження на гетеромежі діють в одному напрямку – робоча плівка розтягується, а пасивувальний шар – стискається.

Полікристальні шари, як і епітаксійні, перебувають у макронапруженому стані. Але в зв'язку з тим, що орієнтаційний зв'язок між підкладкою та плівкою слабкий або відсутній, випливає, що невідповідність сталих решітки не відіграє істотної ролі у виникненні мікронапружень. Основну роль може відігравати різниця коефіцієнтів термічного розширения контактувальних матеріалів Δa , особливо це проявляється у плівках анізотропних матеріалів. На величину напружень можуть впливати наявність та неоднорідний розподіл за товщиною плівки легувальних та неконтрольованих домішок [11].

Для порівняння досліджували ЕП $Hg_{1-x}Cd_xTe$, вирощені методом МПЕ з пасивувальними шарами, отриманими анодним оксидуванням. Слід зазначити, що хімічний склад і структура АО є досить складними. Сама технологія отримання пасивувальних шарів – анодних оксидів із дрібнодисперсною полікристальною структурою, передбачає, на нашу думку, досить сильний хімічний зв'язок АО з робочим шаром плівки. Значення МКТ ЕП з АО становить 900 МПа, що відповідає зміцненню 55 %. На основі електронографічних досліджень, як було сказано вище, ми експериментально встановили усереднене значення сталої решітки АО ($a_{AO} = 5, 34$). Це дало можливість розрахувати напруження невідповідності в гетероструктурі $AO/Hg_{1-x}Cd_xTe$.

Величину напружень оцінювали за формулою

$$\sigma_{\Delta a} = \frac{E_f(\Delta a)}{\left[(1 - \nu_f)a\right]},\tag{1}$$

де E_f – модуль Юнга матеріалу плівки; ν – коефіціент Пуассона; Δa – різниця сталих решіток гетеропари (АО та $Hg_{1-x}Cd_xTe$); a – середнє значення сталих решітки контактувальних матеріалів. Оскільки нас цікавлять напруження не в АО, а в шарі HgCdTe, для розрахунків вважатимемо плівкою не АО, а шар HgCdTe. У такий спосіб одержимо напруження саме в цьому матеріалі. Підставивши значення $E_f = 46,76$ ГПа, $a_{AO} = 5,34$ Å, $a(Hg_{1-x}Cd_xTe) = 6,4681$ Å та $\nu = 0,369$ у (1), одержимо $\sigma_{\Delta a} \approx 14159$ МПа (розраховані та експериментальні значення модуля Юнга HgCdTe та бінарних складових твердого розчину подано в [12]).

Розраховане значення $\sigma_{\Delta a}$ для гетеросистеми AO / $Hg_{1-x}Cd_xTe$ значно перевищує межу плинності для HgCdTe, яка для складу = 0,20, за нашими даними [1], становить 41,4(<100>), 25,3(<110>) i 28,6(<111>) МПа, а отже, може спричинити пластичну деформацію. Визначити величину цієї деформації не можна, оскільки значна частина напружень релаксує з утворенням дислокацій невідповідності. Збільшення МКТ ЕП можна пояснити пружними напруженнями у шарі *HgCdTe*, а також підвищеною концентрацією дислокацій невідповідності (МКТ пропорційна до концентрації дислокацій). Як встановлено в [13], підвищені значення МКТ властиві пружно деформованим матеріалам.

Незважаючи на невелику різницю сталих решіток матеріалів вихідних гетеросистеми $CdTe/Hg_{1-x}Cd_xTe$ ($\Delta a \approx 0,3\%$), параметр їх невідповідності $f = 3 \times 10^{-3}$, що більш ніж на порядок перевищує цей параметр для умов гомоепітаксії [14]. Цю обставину необхідно враховувати для аналізу фізико-механічних властивостей меж розділу. Розраховане напруження невідповідності а, спричинене різницею сталих решіток компонентів гетеропари, виникає безпосередньо під час нарощування ЕП і становить приблизно 222 МПа.

Термічне напруження $\sigma_{\Delta a}$, спричинене різницею коефіцієнтів термічного розширення контактувальних матеріалів, за умови лінійної температурної залежності сталих решітки становить приблизно 36 МПа (для реальних технологічних умов вирощування). Зазначимо, що $\sigma_{\Delta a}$ істотно (у 6 разів) перевищує $\sigma_{\Delta \alpha}$ [15].

Під час нарощування однорідного шаруCdTe введення сітки ДН повинно проходити на поверхні розділу вже на початкових стадіях росту. Оскільки в структурі цинкової обманки, в якій кристалізуєтьсяCdTe та тверді розчини $Hg_{1-x}Cd_xTe$, існують дислокації α - та β -типів, така сітка ДН утворюється з паралельно розміщених сукупностей ДН α -типу та спрямованих під кутом до них ДН β -типу. Фізико-механічні та електронні властивості α - та β -дислокацій відрізняються, тому можлива анізотропія цих властивостей в гетеросистемі по різних напрямках [16].

На нашу думку, враховуючи той факт, що полікристальний шар слабко зв'язаний з робочим шаром плівки, кількість ДН в робочому шарі плівки є меншою, ніж у разі монокристального покриття. Меншою є і незрелаксована компонента пружного стану, який вносить зміни в електрофізичні параметри.

Питання щодо електричної активності дислокацій і точкових дефектів деформаційного походження в кристалах HgCdTe розглядали в [3]. Показано, що основну роль тут відіграють не безпосередньо дислокації, а електронні стани точкових дефектів, утворених у процесі руху дислокацій. Слід враховувати, що, крім деякої пластичної деформації нанесених на підкладку шарів, існує також пружно напружений стан, який вносить зміну фізичних властивостей у матеріал ЕП. Пружна деформація спричиняє зміни зонної структури напівпровідника, ширини забороненої зони, концентрації ННЗ та їх рухливості.

Відомо, що чутливою характеристикою структурного стану поверхні зразка є мікротвердість [17]. За залежністю МКТ від глибини проникнення індентора (зі зміною навантаження) можна прослідкувати за впливом структури різних підшарів на механічні властивості ЕП. Такі залежності для ЕП, отриманих методом МПЕ, з пасивувальними шарами зображено на рис. 3.

Рис. 3. Залежність мікротвердості від навантаження для ЕП HgCdTe, отриманих методом МПЕ з різними пасивувальними шарами: зразок №1 з поліCdTe(1); зразок №2 з моно-CdTe (2)

Як бачимо полікристальний шар за малих навантажень ($P = 2 \times 10^{-2}$ Н) має меншу МКТ ($H_V = 870$ МПа), тобто є "пухкішим"порівняно з монокристальним шаром CdTe ($H_V = 1000$ МПа) за тих самих навантажень. Це можна пояснити високою дисперсністю полікристального шару. За навантажень $P = 20 \times 10^{-2}$ Н (глибина проникнення індентора d = 3мкм) МКТ двошарових структур $CdTe/Hg_{1-x}Cd_xTe$ майже однакові $H_V = 500 - 550$ МПа). Ці значення лежать у межах значення МКТ ЕП складу x = 0, 22. Зауважимо, що МКТ ЕП більша, ніж МКТ масивного матеріалу такого самого складу.

3. Електрофізичні та фотоелектричні властивості. Під час дослідження температурної залежності часу життя ННЗ для плівок $Hg_{1-x}Cd_xTe$ з пасивувальними шарами CdTe різної структури було зауважено, що час життя ННЗ досить сильно відрізняється (табл. 3). Ми припускаємо, що це може бути пов'язано з внутрішніми напруженнями та ДН, які виникають у цих гетероструктурах.

Досліджено деякі електрофізичні, фотоелектричні та механічні параметри ЕП. Деякі з них наведено в табл. 3.

Номер	Склад	Товщина	Концентра-	$\mu_n,$	Структура	Мікротвер-	Час
зразка	x	h, мкм	ція n , см ^{-3^*}	${ m cm}^2/(B\cdot c)^*$	пасивуваль-	дість H_V , МПа	життя
					ного шару	(P = 0, 20 H)	au, мкс
МПЕ №1	$0,\!220$	$11,\!6$	$5,1 imes10^{14}$	69 000	полікристал	520	$7 \div 8$
MΠE №2	$0,\!220$	$13,\!1$	$9,0 imes 10^{13}$	66 000	монокристал	550	$0,6\div 0,8$

 $^{*}T = 77K$

Табл. 3. Параметри плівок $Hg_{1-x}Cd_xTe$ з пасивувальними шарами CdTe

III. Висновки:

1. За допомогою ДЕВЕВ досліджено структуру АО на ЕП $Hg_{1-x}Cd_xTe$ та визначено усереднену сталу решітки АО.

2. Проведено розрахунки напружень невідповідності в гетероструктурах AO / $Hg_{1-x}Cd_xTe$ та $CdTe/Hg_{1-x}Cd_xTe$.

3. На основі досліджень, проведених методом Хпроменевої дифрактометрії, встановлено, що пасивувальний шар CdTe зі структурою полікристала орієнтаційно слабко зв'язаний з робочим шаром ЕП $Hg_{1-x}Cd_xTe$. Це не призводить, на нашу думку, до утворення такої кількості ДН та залишкових напружень, як у разі монокристального шару *CdTe*.

4. У разі полікристального шару CdTe не відбувається істотних змін дефектної структури робочого шару ЕП, а також ширини забороненої зони, концентрації ННЗ та їх рухливості. Крім того, послаблюються генераційно-рекомбінаційні процеси на гетеромежі структури $CdTe/Hg_{1-x}Cd_xTe$, що, своєю чергою, збільшує час життя ННЗ у робочому шарі ЕП $Hg_{1-x}Cd_xTe$.

5. Установлено факт залежності часу життя ННЗ в робочих шарах ЕП $Hg_{1-x}Cd_xTe$ від структури пасивувального шару CdTe.

Література

- Курило И.В., Алёхин В.П., Булычев С.И. Физико-механические свойства теллуридов кадмия, ртути и их твердых растворов.–М., 1982.–92 с. (Препр. / АН СССР. Ин-т металлургии им. А.А. Байкова).
- [2] Kurilo I.V., Rudyj I.O., Vlasenko O.I. //J.Cryst. Growth. - 1999. - №204. - P. 447-452.
- [3] Гасан-Заде С.Г., Старый С.В., Стриха М.В., Шепельский Г.А. // Физ. и техн. полупроводников. – 2003. – № 37. – С. 8–16.

THEORETICAL I APPLIED PHYSICS

- [4] Ivanov-Omskii V.I., Berchenko N.N., Elizarov A.I.
 // Phys. Stat. Sol. (a). 1987. 103, 11. P. 11-28.
- [5] Agnihotri O.P., Musca C.A., Faraone L. // Semicond. Sci. Technol. - 1998. - 13. - P. 839-845.
- [6] Stahle C.M., Helms C.R., Schake H.F. e.a. // J.Vac. Sci. Technol. - 1989. - A7 (2). - P. 474-482.
- [7] Helms C.R. // J.Vac.Sci. Technol. 1990. A 8(2). –
 P. 1178–1181.
- [8] Brandt G., Moritz A. // Mat. Res. Bull. 1985. 20. – P. 49–56.
- [9] Средин В.Г., Мезин Ю.С., Укроженко В.М. // Физ. и техн. полупроводников. – 2001. – 35. – С. 1335–1337.
- [10] Берченко Н.Н., Кревс В.Е., Средин В.Г. Полупроводниковые твердые растворы и их применение. – М.: Воениздат. 1982. – 208 с.
- [11] Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. – М.: Металургия, 1988. – 574 с.

- [12] Kurilo I.V., Alekhin V.P., Rudyi I.O., Bulychev S.I., Osypyshin L.I. // Phys. Stat. Sol. (a). – 1997. – 163. – P. 47 – 58.
- [13] Аблова М.С. // Методы испытаний на микротвердость. – М.: Наука, 1965. – С. 237–244.
- [14] Мильвидский М.Г., Освенский В.Б. Структурные дефекты в эпитаксиальных слоях полупроводников. – М.: Металлургия, 1985. – 160 с.
- [15] Курило І.В., Рудий І.О., Власенко О.І. // Укр. фіз. ж. – 1998. – 43. – С. 207 – 212.
- [16] Власенко А.И., Власенко З.К., Курило И.В., Рудый И.А. // Физ. твердого тела. – 2006. – Т. 48, Вып. 3. – С. 436–442.
- [17] Концевой Ю.А., Литвинов Ю.М., Фаттахов Э.А. Пластичность и прочность полупроводниковых материалов и структур. – М.: Радио и связь, 1982. – 240 с.

THE PROPERTIES OF PASSIVATING LAYERS IN HETEROSTUCTURES (ANODIC OXIDE, CdTe)/HgCdTe

I. Rudyi^{*a*}, I. Lopatynskii^{*a*}, I. Kurilo^{*a*}, M. Fruginskii^{*a*}, I. Virt^{*b*}, F. Sizov^{*c*}

 ^a National University "Lvivska Politechnika" 12 Bandera Str., 79013, Lviv, Ukraine
 ^b Drohobych State Pedagogical University
 24 Franko Str., 82100, Drohobych, Ukraine
 ^c V.Lashkariov Institute of Semiconductor
 Physics National Academy of Sciences of Ukraine
 41 Nauki pr., 03028, Kyiv, Ukraine

There is an increasing interest in the use of CdTe and $Hg_{1-x}Cd_xTe$ compounds as a base for infrared detectors. Thin films heterostructures anodic $\operatorname{oxide}/Hg_{1-x}Cd_xTe$ and $CdTe/Hg_{1-x}Cd_xTe$ are very often used in the photodetectors fabrication process. In present work we investigated he-terostructures consisting of molecular beam epitaxy grown monocrystalline Hg1-xCdxTe active film with either anodic oxide and monocrystalline or polycrystalline passivation CdTe layer. The structural properties and surface morphology of passivating layers were studied by reflection high-energy electron diffraction method. The influence of passivation layer structure on the properties of active film was also studied by means of XRD technique and the lattice parameter of active layer was determined. The mechanical properties of heterostuctures were investigated by microhardness method. Electrophysical and photoelectric parameters of epitaxial $Hg_{1-x}Cd_xTe$ films were measured.

Keywords: heterostructures, structure, misfit dislocation, elastic strain, photoelectric parameters.

PACS: 68.35. - p: 68.55.Ce; 68.60.Bs

UDK: 621.315.592 + 548.51 + 537.311.33