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Po3risinyTo0 KOMILIEKCHI IITY4YHI HeHpOHHI Mepexi, PpyHKUil akTHUBalii AKMX € KOMII-
JIEKCHUMH aHAJIOTaMHU palioHaJbHOI curmoinu. HaBeaeHo airopuTtM HaBYaHHSI LMX MepeiK,
3aCHOBaHMi HA MeTO/Ii 3BOPOTHOI0 MOLIMPEHHS MOXHOKH.
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Neural networks with complex weights and continuously differentiable activation
function have been studied in the paper. Learning algorithm based on the backpropagation
method for rational sigmoid function has been given in the paper.
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I ntroduction

Neurd networks are the effective means of solving the task of function approximation, forecasting
the dynamic systems behaviour, multiple attribute set classification, pattern recognition, associative search
and lot of other tasks. At present many types of architecture of neural networks with real weights have
been developed in the information science. The variety of architectures is conditioned by different relation
types between neurons, various activation functions (continuous or discontinuous (threshold type)) and
different functioning mode of the neural networks. In connection with it many learning algorithms have
been offered for neural networks. We introduce the notion of the complex neuron with continuously
differentiable function and consider neural networks being built of these neurons. We also describe the
modification of the well-known algorithm of backpropagation [1] for complex networks. Complex neural
networks can be used for both solving the same tasks as real networks (with possible reduction of the
number of neuron of input and output layers) and specific problem solution with complex initial data (for
example the approximation of functions of complex variable).

Complex neural networks
The complex neuron is the functiona element with n inputs z,...,z, and one output y, which is
calculated thus:

n
y= f[Zsz]- +W0J,

j=1



where complex numbers z,...,z, areinput signals,

21 i'[_ Wy, W,,...,W,, — complex weight coefficients

1y Wno

22 sz (similarly to [2-3] we can term w, as the threshold
e 2 — of neuron element), f:C—C - nonlinear
Zh VVn function, continuous with its partial derivative

which we call the function of activation.

Complex neurons permit the different mode
of connection in neura networks. We confine
ourselves to studying the multilayer feed-forward
neural networks that is the networks satisfying the
following condition: the neurons of each layer are connected with the neurons of previous or next layers by
the rule “each to each”. The first layer is called the input layer, internal layers are called hidden ones and
the last layer is named the output layer. The proceeding of neura network can be described with a
following formula:

Figure 1. The complex neuron
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where the index j denotes the number of input neuron, k is the number of output neuron, | is the layer
index, zy =X;y +iY;y isthevaue of the | input signal of k neuron in | layer, w; =u;, +ivy, isthe

value of the ) weight coefficient of k neuronin| layer.

Learning algorithm
Multilayer neural network calculates output vector F(2) on the base of input vector z. We mean the
learning algorithm of instruction the selection of network parameters (weight coefficients w;,, ) thus that

network puts in correspondence output vectors from the set {dl,...,dm} for input vectors from the set
{z%...,.2"} . The collection of the pairs {z*,d}...,(z",d™} is called the learning sample. Let f,' be the
value of output signal of k neuron in the last output layer | in the case, then the network input vector is
equal to z'. Let usintroduce the important variable that will be named the network error E.

input layer  hidden layers output layer

Figure 2. The multilayer feed fonward complex network
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We shall supposethat E = E(W )= E(U,V ), where U is the vector components of which are the real
parts of al coefficients of our neural network, V isthe vector components of which are the imaginary parts



of coefficients of the network. During learning we shall change the weight vector in direction of
antigradient of E on every iteration:

AW =7, grad EU" V" ), W =W +aW", 2

wherer isthe number of iteration.
Let

Sq = Zwtjkl thkl +Wékl , ay =Resy, by =Ims,, f(2) = g(xy) +i h(xy).
i

Let us put down the components of gradient calculated by applying the last layer weigts
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Let us adduce calculating formulas for partia derivatives in (3)-(4) (we shal miss the index t for the
simplification of notation):
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Then we set to selection of the activation function. The most popular activation function for real

or hyperbolic tangent tanh x (sometimes with

—X

neura networks are logistic sigmoid curve f(x) = 1 1
+

some additional parameters). Unfortunally, the above mentioned functions are discontinuous as functions
of complex variable. Therefore, they can’t be applied in learning algorithms for complex networks which
use the value of the gradient vector. Therational sigmoid

z
f(z)=
@) |z|+1

is stripped of these disadvantages. For rational sigmoide we can write

f(2 =g(xy) +ih(xy),
where

X y
g(x,y)=———, h(x, y) = —2——.
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It is necessary to notice than the rational sigmoide possesses the values that lay in unit disk centered
at coordinate origin. In addition, the rational sigmoide compresses proportionally the real and imaginary
parts of its input argument and has the property of reinforcing “weak” input signals and decreasing
“strong” input signals.



Using the rational sigmoide curve we can easily obtain the following expressions for partia
derivatives:
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, calculated according to the formulas (3)-(8) let compute

the corrections Auy, i Av,, for neurons of the last (output) layer. Let us show, how we can calculate the

corrections of weight coefficients of other layers of our neural network by the instrumentality of the value

of partial derivatives ok and oE . For the last layer we have:
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In the last two formules the partial derivatives

are aready calculated

But the partia derivatives of E with respect of the value of input values x;, and y,, for the output layer

coincide by implicity with the derivatives of the function of network error with respect of the real and

imaginary parts of respective output values of neurons of previous layer. Therefore
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Theformulas (9) is similar to (5) for the previous layers and provide the passage from the calculation
of the coordinates of the current layer gradient to the calculation of the respective coordinates of the
previous layer gradient (the method of quick gradient calculation). The received agorithm of the correction
of weight coefficients in according to formules (2)-(9) is the complex modification of well-known back
propagation error agorithm, described in [1].

The question of the choice of the value of 77, (coefficient of the speed of the learning) in (2) isavery
important one in connection with the application of complex weight neural networks. The traditional
forthright approaches of searching 7, as the solution of the task of one-dimensional optimization are
unacceptable because they require the multiple calculations of the network error £ that is very difficult for
networks with the bundle of neurons. Therefore we can set 7, =77, where 7 is any preassigned number

from the segment [0,0L1] . In addition, for selectioning of the value of 77, we can offer the same approach

that can befoundin [3].
The learning of the neural network with the error function of the form (1) needs the consumption of
considerable volume of the additional memory (one complex number for each parameter of the network).



Therefore for the complex neural networks with the great number of complex neuronsit is possible to feed
input vectors in random order and limit ourselves to calculating the gradient of the network error with
respect of the only current element (z‘,dt) of the learning sample. In this case we can simplify the
formulas (3)-(4):
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It will be observed that it is possible to use the various modification of back propagation algorithm
similar to the algorithms detailed in publication [2-5] changing its properly for use in learning of complex
neura networks.

Conclusion
Artificia neural networks with complex weights is enough simple and powerful architecture. This
architecture is extension of real weights network with continuously differentiable activation function and
provides high precision approximation of nonlinear functions. We used the complex activation function
similar to the well-known rational sigmoid and elaborated earning algorithm based on the backpropagation
of the error of our network. Our method can be applied to networks with different activation functions. The
batch-learning is also possible for our nets.
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