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Розглянуто комплексні штучні нейронні мережі, функції активації яких є комп-

лексними аналогами раціональної сигмоїди. Наведено алгоритм навчання цих мереж, 
заснований на методі зворотного поширення похибки. 

Ключові слова: штучний нейрон, штучні нейронні мережі, комплексні нейронні 
мережі, алгоритм зворотного поширення помилки. 

Neural networks with complex weights and continuously differentiable activation 
function have been studied in the paper. Learning algorithm based on the backpropagation 
method for rational sigmoid function has been given in the paper. 

Key Words: artificial neuron, artificial neural networks, complex neural networks, 
learning algorithms, backpropagation.  

Introduction 
Neural networks are the effective means of solving the task of function approximation, forecasting 

the dynamic systems behaviour, multiple attribute set classification, pattern recognition, associative search 
and lot of other tasks. At present many types of architecture of neural networks with real weights have 
been developed in the information science. The variety of architectures is conditioned by different relation 
types between neurons, various activation functions (continuous or discontinuous (threshold type)) and 
different functioning mode of the neural networks. In connection with it many learning algorithms have 
been offered for neural networks. We introduce the notion of the complex neuron with continuously 
differentiable function and consider neural networks being built of these neurons. We also describe the 
modification of the well-known algorithm of backpropagation [1] for complex networks. Complex neural 
networks can be used for both solving the same tasks as real networks (with possible reduction of the 
number of neuron of input and output layers) and specific problem solution with complex initial data (for 
example the approximation of functions of complex variable). 

Complex neural networks 
The complex neuron is the functional element with n inputs nzz ,,1   and one output y, which is 

calculated thus: 
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Figure 1. The complex neuron 

where complex numbers nzz ,,1   are input signals, 

,,,, 10 nwww   – complex weight coefficients 

(similarly to [2-3] we can term 0w  as the threshold 

of neuron element), CCf →:  – nonlinear 

function, continuous with its partial derivative 
which we call the function of activation.  

Complex neurons permit the different mode 
of connection in neural networks. We confine 
ourselves to studying the multilayer feed-forward 
neural networks that is the networks satisfying the 

following condition: the neurons of each layer are connected with the neurons of previous or next layers by 
the rule “each to each”. The first layer is called the input layer, internal layers are called hidden ones and 
the last layer is named the output layer. The proceeding of neural network can be described with a 
following formula: 
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where the index j denotes the number of input neuron, k is the number of output neuron, l is the layer 

index, jkljkljkl yixz +=  is the value of the j input signal of k neuron in l layer, jkljkljkl viuw +=  is the 

value of the j weight coefficient of k neuron in l layer. 

Learning algorithm 
Multilayer neural network calculates output vector F(z) on the base of input vector z. We mean the 

learning algorithm of instruction the selection of network parameters (weight coefficients jklw ) thus that 

network puts in correspondence output vectors from the set { }mdd ,,1   for input vectors from the set 

},,{ 1 mzz  . The collection of the pairs ( ) ( ){ }mm dzdz ,,,, 11   is called the learning sample. Let t
kf  be the 

value of output signal of k neuron in the last output layer l in the case, then the network input vector is 

equal to tz . Let us introduce the important variable that will be named the network error E. 
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We shall suppose that ( ) ( )VUW ,EEE == , where U is the vector components of which are the real 

parts of all coefficients of our neural network, V is the vector components of which are the imaginary parts 
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of coefficients of the network. During learning we shall change the weight vector in direction of 
antigradient of E on every iteration: 

( )rr VUW ,grad Er
r η−=Δ , rrr WWW Δ+=+1 ,                                           (2) 

where r is the number of iteration. 
Let  
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Let us put down the components of gradient calculated by applying the last layer weigts 
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Let us adduce calculating formulas for partial derivatives in (3)-(4) (we shall miss the index t for the 
simplification of notation): 
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Then we set to selection of the activation function. The most popular activation function for real 

neural networks are logistic sigmoid curve 
xe

xf −+
=

1

1
)(  or hyperbolic tangent xtanh  (sometimes with 

some additional parameters). Unfortunally, the above mentioned functions are discontinuous as functions 
of complex variable. Therefore, they can’t be applied in learning algorithms for complex networks which 
use the value of the gradient vector. The rational sigmoid 

( )
1|| +

=
z

z
zf  

is stripped of these disadvantages. For rational sigmoide we can write  

f(z)  = g(x,y) + i h(x,y), 

where 

( )
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It is necessary to notice than the rational sigmoide possesses the values that lay in unit disk centered 
at coordinate origin. In addition, the rational sigmoide compresses proportionally the real and imaginary 
parts of its input argument and has the property of reinforcing “weak” input signals and decreasing 
“strong” input signals.  
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Using the rational sigmoide curve we can easily obtain the following expressions for partial 
derivatives: 
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The values of derivatives 
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, calculated according to the formulas (3)-(8) let compute 

the corrections jkluΔ  і jklvΔ  for neurons of the last (output) layer. Let us show, how we can calculate the 

corrections of weight coefficients of other layers of our neural network by the instrumentality of the value 

of partial derivatives 
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In the last two formules the partial derivatives
kl

kl

kl

kl

klkl b

g

a

g

h

E

g

E

∂
∂

∂
∂

∂
∂

∂
∂

,,, , 
kl

kl

kl

kl

b

h

a

h

∂
∂

∂
∂

,  are already calculated 

by the formules (6)-(8). The other partial derivatives are equal: 
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But the partial derivatives of E with respect of the value of input values jklx  and jkly  for the output layer 

coincide by implicity with the derivatives of the function of network error with respect of the real and 
imaginary parts of respective output values of neurons of previous layer. Therefore 
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The formulas (9) is similar to (5) for the previous layers and provide the passage from the calculation 
of the coordinates of the current layer gradient to the calculation of the respective coordinates of the 
previous layer gradient (the method of quick gradient calculation). The received algorithm of the correction 
of weight coefficients in according to formules (2)-(9) is the complex modification of well-known back 
propagation error algorithm, described in [1]. 

The question of the choice of the value of rη  (coefficient of the speed of the learning) in (2) is a very 

important one in connection with the application of complex weight neural networks. The traditional 

forthright approaches of searching rη  as the solution of the task of one-dimensional optimization are 

unacceptable because they require the multiple calculations of the network error Е that is very difficult for 

networks with the bundle of neurons. Therefore we can set ηη =r , where η  is any preassigned number 

from the segment ]1;01,0[ . In addition, for selectioning of the value of rη  we can offer the same approach 

that can be found in [3]. 
The learning of the neural network with the error function of the form (1) needs the consumption of 

considerable volume of the additional memory (one complex number for each parameter of the network). 
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Therefore for the complex neural networks with the great number of complex neurons it is possible to feed 
input vectors in random order and limit ourselves to calculating the gradient of the network error with 

respect of the only current element ( )tt dz ,  of the learning sample. In this case we can simplify the 

formulas (3)-(4): 
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It will be observed that it is possible to use the various modification of back propagation algorithm 
similar to the algorithms detailed in publication [2-5] changing its properly for use in learning of complex 
neural networks. 

Conclusion 
Artificial neural networks with complex weights is enough simple and powerful architecture. This 

architecture is extension of real weights network with continuously differentiable activation function and 
provides high precision approximation of nonlinear functions. We used the complex activation function 
similar to the well-known rational sigmoid and elaborated earning algorithm based on the backpropagation 
of the error of our network. Our method can be applied to networks with different activation functions. The 
batch-learning is also possible for our nets. 
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