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A mathematical reliability model in the form of a semi-Markov process of failures and
recoveries has been constructed for a high-reliability wireless telecommunication system
with a complex control system. The main characteristics of this process have been ob-
tained, as well as an analytical expression for estimation of the probability of retaining
the system in an operable state. This expression depends on the parameters of the semi-
Markov process, which are determined by the reliability characteristics of the controlled
modules, of their control hardware and by the parameters of the used means of control of
the correct functioning of the system under consideration.
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1. Introduction

Wireless communication systems refer to a class of systems that operate on a real-time scale, which
imposes certain restrictions on their design, and, at the same time, gives rise to a number of problems,
one of which is to ensure high reliability of their functioning over a long time. This fact causes the urgent
need to construct such systems using the redundancy and a developed complex control system (CCS) for
their proper functioning [1, p. 51], which allows for the self-recovery of such systems. It should be noted
that along with measures to introduce the backup and recovery of having failed hardware, the correcting
imperfect programs or data, the control is one of the effective means of improving the reliability and
dependability of telecommunication systems. The main means for detecting failures in the systems
of this class are the means of hardware (operational) control [2, p. 211], the implementation of which
requires the introduction of additional equipment. However, for some reasons (significant hardware
costs to ensure high efficiency of operational control, significant difficulties in the operational control of
individual modules of the system, etc.), it is rarely possible to cover the hardware control of the system
as a whole. Therefore, the control of the correct functioning of high-reliability systems is carried out by
CCS. When using CCS, the control of the correct functioning of the system is organized on the basis
of periodic software (test) control, which controls the performance of the system modules and their
control hardware, and which is used along with the hardware control, which allows establishing with
certain certainty the true state of the system in the period between software control. Accordingly, at
the stage of system designing of high-reliability telecommunication systems of wireless communication,
before developers there arises a problem of estimation of expediency of application of certain methods
of control of the correct functioning of the system being designed, and substantiation of requirements
for their characteristics, based on providing the required level of reliability of the controlled system
functioning.

It should be noted that at present there are relatively few works on the reliability of complex
technical systems using CCS, which telecommunication systems refer to. Moreover, the known works
present reliability models of controlled objects, each of which is suitable for certain assumptions and
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restrictions that are not implementable in practice. For example, in [2, pp. 218, 252] and [3], the
reliability models of the processor do not take into account the failures of the hardware and software
of the controlled object and its control means; it has also been made a number of assumptions that
are not implemented in practice, such as failure and recovery flows are taken to be exponential, and
in [4, pp. 86, 97], [5, pp. 158, 159] the formation of reliability models of complex systems is made based
on the assumption that the control is continuous and reliable, i.e., ideal. The indicated above drawbacks
of these works significantly affect the reliability of research results.

The purpose of this work is to develop a semi-Markov reliability model of functioning of a wireless
telecommunication system with a complex control system, which at the stage of system design will
allow proper evaluating the influence of different control methods on the reliability of the system being
projected.

2. Assumptions and notation

We assume that the modules that make up the wireless telecommunication system operate (fail, being
controlled, recover, etc.) independently of each other, and the given reliability of each of them can be
achieved by different methods. The expression for the total indicator of the reliability of this wireless
telecommunication system can be written [6, p. 49] in the form

R(t) =

n
∏

i=1

Ri(t), (1)

where Ri(t) is the reliability index of the i-th module of the wireless telecommunication system, n
is the number of modules of the system. According to the formula (1), it is expedient to solve the
formulated problem with respect to an arbitrary controlled module of this system. Also in this article
we consider the separate redundancy of the controlled module and of the control hardware of its correct
functioning.

In the wireless telecommunication system, which consists of the basic and backup typical elements
of replacement (devices, modules, etc.), there are various disturbances of the process of its functioning,
which are caused by both permanent failures and short-term faults that are self-eliminating (faults).
The flows of failures and faults are independent, and the time before they occur are random variables,
distributed according to the law F (t) = P{ξ 6 t} with the corresponding parameters λfm, λfch, λflm

and λflch (intensities of failures of the module and control hardware, and of faults of the module and
control hardware respectively).

The state of this system is controlled continuously by hardware and periodically by control software.
Let us denote pdfh, pdfh ∈ (0, 1) and pdflh, pdflh ∈ (0, 1) to be the probability of detection of failures
and faults of the hardware control, respectively. Since the control hardware provides instant detection
of failures and faults, the average time tfdch of failures detection by means of hardware is zero.

However, the control hardware, like other technical devices, has the failures and faults proneness,
resulting in errors of the first and second kind [2, p. 218], [7, p. 83], [8, p. 194]. The error of the first
kind is characterized by the conditional probability αffch, αffch ∈ (0, 1) of the false failures and by its
intensity λe chα, and the error of the second kind is characterized by the conditional probability βfthch,
βfthch ∈ (0, 1) of the failure throughput and by its intensity λe ch β.

Software (test) control of the correct functioning of the controlled system and of its control hardware
is carried out over random time intervals ζ, distributed according to the law G(t) = P {ζ 6 t}. Suppose
that the duration tsc = ς of software control is also a random variable, distributed according to the
law H(t) = P{ς 6 t}. Due to the imperfection of control software (it is not ensured full coverage
of the examination of the elements of the controlled object) [2, p. 198], the hardware failures of this
system are detected with the probability ppfds, ppfds ∈ (0, 1), where ppfds is the probability of detection
of failures by software means of control. As compared to the hardware control, the software control
is more reliable. During the software control of the correct functioning of this system, the faults of
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the controlled equipment can occur, and they lead to errors of the first kind, which are characterized
by the conditional probability αffs, αffs ∈ (0, 1) of the false failures and by its intensity λe sα. At
the same time, an assumption is made for impossibility both of hardware and software controls faults
that lead to neglecting the failures (improbable errors of the second kind). In all cases of detection of
failures, their identification is carried out, and when the fact of the presence of a failure is established,
an unscheduled program control is carried out with the purpose of localization of the failure and the
recovery of the system operation is done by replacement of the failed module with redundant one. The
time trhm = χ of recovery of the hardware of the controlled module is a random variable distributed
according to the law K(t) = P{χ 6 t}. After the restoration of efficiency of this system, redesign of
the moment of carrying out the following software control of its correct functioning is done.

Wireless communication hardware control can be either embedded or acts as separate functional
modules (e.g., control redundancy). In this regard, when the control hardware failures are detected,
depending on the method of redundancy, only the failed control hardware or the entire module are
to be recovered. The time trch = η of recovery of the control hardware is also a random variable
distributed by the law L(t) = P{η 6 t}.

The final decision on the presence of failure of a particular module of a wireless communication
system or its control hardware can be made based on the results of software control, i.e., the decision
on the need to recovery of the functionality of this module can be made only as a result of software
control. In this regard, the time between the start of recovery of a controlled system is a discrete
random variable, the sequence of which forms a simple discrete recovery process. It is obvious that
the use of CCS in a wireless communication system leads to the extension of the set of its phase
states [6, p. 50]. The states of problems detected and missed by the control means emerge as well as
the software control execution, module recovery, etc., into which the controlled module transits in the
course of its functioning. In this regard, the functioning of this module over time is described by a
discrete random process whose states correspond to its physical states. We denote the states of the
controlled module by the letter S with an index.

We define the set E of the states of a random process as follows: S0 corresponds to the functioning
of the module in the absence of failures (failures and faults); S1 corresponds to the functioning of
the module in the presence of an error caused by faults having been missed by control hardware;
S2 corresponds to the state of the module which is characterized by the detection of module failure by
control hardware; S3 corresponds to the functioning of the module according to the program of failure
identification detected by control hardware; S4 corresponds to the functioning of the module with
missed failure by control hardware; S5 corresponds to the occurrence of a failure of control hardware,
in the result of which they fix the false failure of the controlled module; S6 corresponds to the failure of
control hardware, in the result of which all subsequent failures of the controlled module will be missed;
S7 corresponds to the termination of the functioning of the operable module according to the main
program and its transition to the regime of scheduled program control; S8 corresponds to the transition
of the module with the failure missed by hardware control to the scheduled program control regime;
S9 corresponds to the functioning of the module according to the program of identification of a failure
caused by a signal of a false failure; S10 corresponds to the transition of the module, in which the
control hardware failed, to the scheduled program control regime; S11 corresponds to the functioning
of the module with the failure having been missed by hardware and software control; S12 corresponds
to the transition of the module with the failure having been missed by hardware and software control in
the scheduled program control regime; S13 corresponds to the emergence in the module with the failure
having been missed by hardware and software control of a new failure detected by control hardware;
S14 corresponds to the emergence of a new failure in the module with the failure having been missed
by hardware and software means of control, which results in the fixing of the failure of this module;
S15 corresponds to the transition of the module with the failure having been missed by hardware and
software control to the mode of identification of the failure due to the detection by hardware control of
a new failure of the controlled module; S16 corresponds to the transition of the module with the failure
detected by hardware control to the regime of unscheduled program control; S17 corresponds to the
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transition of the module with the failure having been missed by hardware and software control to the
regime of identification of the failure caused by the failure of control hardware, which results in fixing
the failure of this module; S18 corresponds to the emergence in the module with the failure having been
missed by hardware and software control of a new failure of control hardware, in the result of which all
subsequent failures of this module will be missed by it; S19 corresponds to the transition of the module
with the failure having been missed by hardware and software control to the unscheduled program
control due to the detection a new failure of this module made by control hardware; S20 corresponds
to the transition of the module with the failure having been missed by hardware and software control
to the unscheduled program control due to the failure of its control hardware, which results in the
fixing of the failure of this module (false failure); S21 corresponds to the transition of the module the
failure having been missed by hardware and software control, as well as with the subsequent failure of
its control hardware, to the regime of scheduled program control; S22 corresponds to the restoration of
performance of the controlled module; S23 corresponds to the recovery of the control hardware of this
module.

Let us now proceed to establishing the direction of the transitions of a random process between the
specified states, as well as the peculiarities of these states.

If the random process is in the state S0 (S11), after some random time ξ, it will transit to one of
the states S1, S2, S4 ÷ S7 (S12 ÷ S14, S18) which correspond to the states of the controlled module,
which are caused by its faults emergence or by the approach of a moment of the scheduled program
control of its correct functioning. Since these events are random and the probabilities of occurrence
of different intervals between failures (between hardware faults and failures) and of the duration of
the program control period are distributed according to an arbitrary law, the average duration of the
random process in the states S0 and S11 is random with an arbitrary distribution function. Moreover,
the specified time does not depend on the previous evolution of the process but depends only on these
states.

Since the controlled module is in the state S1 until the moment of completion of its tasks, the
duration of which is much shorter than the time before the following failure of the module or its
control hardware, the random process that describes the behavior of this module in time can only go
to the state S′

0. Thus, the average duration of a random process in the state S1 depends only on this
state and does not depend on its previous evolution.

The states of the random process S2, S13 and S5, S14 correspond to the detection of failures
of the controlled module and its control hardware, respectively. Therefore, in accordance with the
peculiarities of functioning of this module, the random process from the states S2, S5, S13, and S14
can transit only to the states S3, S9, S15, and S17, respectively. The average duration of the random
process in the states S2, S5, S13, and S14 correspond to the average time of failure detection by means
of control hardware, which depends on the method of organization of processing of control information
(e.g., the time of processing breaks). Therefore, the average duration of the random process in the
mentioned states depends only on these states and does not depend on the previous evolution of this
process.

The states of the random process S3, S9, S15, and S17 correspond to the identification of the detected
failure, i.e., to the repetition of the corresponding fragment of the program during the implementation
of which this failure has been detected. In accordance with the peculiarities of the functioning of
this module, the random process can transit from the states S3, S15, S17 to the states S16, S19, S20,
respectively; from the state S9 it can transit to the state S23. In addition, the random process can also
transit back from the states S15 and S17 to the state S11 (if fault is in this module), from the state S3
to state S′

0, and from state S9 to the operable state of the module (denoted by S′′
0 ), which differs from

the states S0 and S′
0 by the residual time before the transition of the random process to the state S7.

From the aforesaid, it follows that the average duration of a random process in the states S3, S9, S15,
and S17 depends only on these states and does not depend on the previous evolution of this process.

Since the states of the random process S4, S6, and S18 correspond to the functioning of the controlled
module with a missed failure, and the time before the new failure of this module is much longer than
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the average time before the following moment of scheduled program control of the correct functioning
of the module, then the random process can transit from the specified states only to the states S8, S10,
and S21, respectively. Thus, the moments in which the random process occurs in the states S4, S6,
and S18 are random, and the output from them occurs in random time with an arbitrary distribution
function. Therefore, the average duration of a random process in these states is determined both by
the moment of its entering into these states and the moment of exit out of them.

The states of the random process S7, S8, S10, S12, and S21 correspond to the scheduled program
control of this module, and the states S16, S19, and S20 correspond to the unscheduled program control.
In this regard, the random process from the states S7 and S12 can only transit to the states S0 and
S11, respectively (since the time before failure of the module or its control hardware is much longer
than the program control duration), from the states S10, S20, and S21 it can transit only to the state
S23 (since all failures of control hardware are detected by software controls — by control test), from
the states S16 and S19 to the state S22, and from the state S8 to either state S11 or state S22.

The average duration of the random process in the states S7, S8, S10, S16, S19 ÷ S21 corresponds
to the duration of software control of this module and, therefore, does not depend on the previous
evolution of this process, but depends only on these states.
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Fig. 1. Graph of states and transitions of arbitrary controlled module of wireless communication system
with CCS.

The states of the random process S22 and S23 correspond to the restoration of the operability
of the controlled module and its control hardware, respectively. In this regard, after some random
time trhm, this process will transit from the specified states to the states (we denote them by Sm,n),
which correspond to the operable states of the module, but differ from the state S0 by the number of
serviceable reserve modules m and the control hardware n, respectively.

The average duration of the random process in the states S22 and S23 also depends only on these
states and does not depend on its previous evolution.
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Further, the phase space of the states of the random process begins to expand from the states S′
0

and Sn,m, resulting in new sets of states E′ and Em,n, which are constructed similarly to the aforesaid
set of states E. Note that in random time ξ, the random process of the set E′ of states will transit
either to the state S0 (unless the failure of the controlled module or its control hardware occurs by the
end of the scheduled program control) or to the state Sn,m (in other case).

The phase space of the random process states will expand until it reaches the state SF , which
corresponds to the complete failure of the controlled module.

The directed graph of states G(E,U), whose set of vertices will be equated with the set of states of
the random process, and the direction of transitions from state to state will be equated with its arcs,
for an arbitrary controlled module of the wireless communication system corresponding to the model
is shown in Fig. 1 (state sets E′ and Em.n are shown in simplified form).

3. The system mathematical model construction

The obtained phase space of states has a large dimension and is of little use for reliable system
analysis. The most radical approach to overcome the complexity of the analysis of the obtained model
is to construct a simpler, larger model, the analysis of which is much easier than the analysis of the
real one [9, p. 129], [5, p. 10], which we will use later.

En,m

En,m−1 En,m−2 En−1,m−2

En−1,m En−2,m

En−1,m−1 En−2,m−1 SF

Fig. 2. Extended graph of states and transitions of arbitrary controlled module of wireless
communication system with CCS.

From the above-mentioned analysis of the states of a random process and from the direction of the
transitions from state to state, it is easy to see that transitions between indicated states are carried
out with different intensity. For example, transitions between the sets of states E and Em,n occur
much less frequently than transitions within them. This statement is correct because the transitions of
a random process between the specified sets of states correspond to the transitions caused by failures
of the controlled module or its control hardware, and transitions within these sets correspond to the
transitions caused by faults and scheduled test control. It is known that the failure rate of the equipment
is much less than the intensity of its faults, and the time before the failure of the controlled module
is much longer than the time interval between subsequent moments of scheduled program control of
its correct functioning. Using the specified peculiarity of transitions of the random process, the whole
set of its states can be subdivided into subsets so that the frequency of transitions between the states
of each of them significantly exceeds the frequency of transitions between them. As a result of this
division, we obtain h continuous subsets of states, each of which can be aggregated into a separate
state. Thus, as a result of these procedures, we obtain an aggregated graph of the states of the random
process, which is shown in Fig. 2.

To analyze the obtained model, we use methods known from the theory of phase extension of
states [9, p. 131], [10, pp. 40, 54], [11, p. 73]. In this case, the study of this model is reduced to the
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investigation of a random process of transitions between the aggregated states and its durations in
these states. Based on [8:199], the expression to determine the indicator Ri(t) of reliability of an
arbitrary controlled module of the wireless communication system is written in the form

Ri(t) = P{S(t) ∈ ER}P{S(t) ∈ E0},

where P{S(t) ∈ ER} and P{S(t) ∈ E0} are the probabilities of presence of the random process at
the moment t in the subset ER and E0 of states, respectively. The subset ER of the states of the
random process corresponds to the subset of states of the controlled module, being retained in which
does not lead to the resource (reserve share modules) exhaustion. In other words, P{S(t) ∈ ER} is the
probability that the random process will not attain the state SF during the time interval [0, t] provided
that at the beginning of this time interval it was in the state S0. Accordingly P{S(t) ∈ ER} = Ra i(t),
this represents the probability of the no-failure operation of the controlled module. The methods for
determining the probability Ra i(t) of the no-failure operation of a wide class of controlled devices and
systems are known and well-developed, for example [12, 13].

To determine the probability P{S(t) ∈ E0} (denote it by R0i(t)) of presence of the random process
in the subset E0 of operable states, it is necessary to investigate the process of random transitions in
each of its aggregated states.

In accordance with the graph of states and transitions shown in Fig. 1, the output of a random
process beyond the subset of states E0 is performed either into the states that are related to the
failures of the controlled module, or into the states that correspond to the scheduled program control
of this module. Moreover, at random moments {ti}, which are determined by the previous behavior
of the random process, it goes back to the subset of states E0, which characterizes its cyclicity. The
peculiarity of this process is that the values Ti = ti − ti−1, i > 2, which are related to the transitions
from the states S7, S22 and S23 to the subset of states E0, are mutually independent and distributed
equally; and at the moments of its transition into the subset of states E0, the following moment of
transition of this process to the state S7 is being rescheduled and the course of the process for t > ti
does not depend on its history, i.e., on the course of the process for t 6 ti. Therefore, the moments ti
are regeneration points, and the process itself, which describes the behavior of this module in time, is
regenerative [14, p. 45].
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Fig. 3. Graph of states and transitions of random regeneration process.
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Using the graph of states and transitions which is shown in Fig. 1, we construct a graph of states
and transitions of the regeneration process (Fig. 3). For the convenience of analyzing the regeneration
process, we introduce the state e, entering which means a complete recovery of the random process.
Assume that the average time of presence of this process in the state e is zero. Note that the model
of the controlled module (see Fig. 3) is described by two independent recovery processes [6, p. 50].
We denote them by v(t) and z(t). The process v(t) corresponds to the recovery of the module after
the detection of equipment failures and, as noted above, is regenerative, and the second process z(t)
corresponds to the recovery of the module from the consequences of faults. Since at the moments of
entering the process z(t) the state S0, rescheduling of the moment of the following transition of the
random process to the state S7, is not being done, the specified moments are not points of regeneration,
and the process z(t) is not regenerative. Let dH(t) be the probability that the regeneration period is
on the time interval [t, t+ dt], and S(t) is the state of this process at the moment t. Then

Roi(t) = P{S(t) ∈ E0} =

∫ t

0
R1{S(0, t − x) ∈ E0} dH(x) ·

∫ t

0
R2{S(0, t − x) ∈ E0} dH(x),

where R1{S(0, t− x) ∈ E0} and R2{S(0, t−x) ∈ E0} are the probabilities that on the interval [0, t−x],
the processes v(t) and z(t) will not go beyond the subset of operable states E0.

From [14, p. 26] we know that

∫ t

0
R{S (0, t− x) ∈ E0} dH(x) = Ri(t).

Therefore
Roi(t) = P{S(t) ∈ E0} = R1(t) ·R2(t),

where R1(t) and R2(t) are the true values of the probabilities of presence of random processes ν(t) and
z(t), respectively, on the time interval [0, t] in the subset of states E0.

In practice, the probabilities R1(t), R2(t) are replaced by their stationary values. Then

Roi(t) = R1 · R2.

According to Smith’s theorem [14, p. 26], we have

Ri = lim
t→∞

∫ t

0
Ri{S(0, t − x) ∈ E0} dH(x) = T−1

0

∑

t̄S0,i
= t̄ T−1

0 , (2)

where t̄S0i
and t̄ are the average durations of the random process in the period T0 of regeneration in

the state S0i (S0i ∈ E0) and in the subset of states E0, respectively.
Taking (2) into account, we obtain a formula for determining the probability of presence of a

random process in the subset E0 of the operable states:

Roi = tv t̃z T
−2
0 , (3)

where tv and t̃z are the average durations of the random processes ν(t) and z(t), respectively, in the
period T0 of regeneration in the subset E0 of the operable states.

From the expression (3) it follows that to determine the probability of presence of the random
process in the subset E0 of the operable states, it is sufficient to conduct a time analysis of a random
regenerating process whose graph of states and transitions is depicted in Fig. 3.

In the general case, the regeneration process is described using methods of theory of Markov or
semi-Markov processes. The choice of a mathematical apparatus is determined by the properties of the
states of the process being analyzed, i.e., by the shape of the function of distribution of its durations
in the specified states, as well as by the dependence of the evolution of the process on a given state
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and on its duration in a given state [2, p. 86]. Above, when establishing the direction of transitions of
the random process from state to state, it has been shown that the vast majority of its states have a
semi-Markov property, which implies that the duration of a random process in a state depends on this
state and does not depend on previous evolution. Exceptions are only the states S4, S6 and S18, which
are states of a two-dimensional Markov process, the first component of which describes the state of
the process, and the second one fixes its duration in the states, i.e. the intervals between the moments
of their change [11, p. 5]. The properties of the specified states are a significant factor limiting the
application of the theory of semi-Markov processes to the mathematical description of this model. It
is known that if we extend in a certain way the states S4, S6 and S18 by adding some possible states
to them, in many cases it is possible to achieve that the new extended states will already have a
semi-Markov property [11, p. 5]. As can be seen from the graph of states and transitions (see Fig. 3),
a random process with the probability of a unit goes from the states S4, S6 and S18 to the states S8,
S10 and S21, respectively. Therefore, the durations of the random process in the states S4, S6 and S18
do not affect the average value of T0 is the regeneration period, but affect only the average duration
of the process in the state S0. In this case, we come to a model whose all states have a semi-Markov
property, which allows us to use the recovery equation of Markov to describe it. This equation for the
average duration of a semi-Markov process in the discrete subset of states E [11, p. 27] has the form

T (i)−
∑

j∈(E\e)i

q(i, j)T (j) = τ(i), (4)

where T (i) and T (j) are the average times before the transition of the semi-Markov process from the
state Si and Sj, respectively, to the state e, τ(i) is the average duration of this process in the state Si,
q(i, j) is the probability of the transition of the process from the state Si to the state Sj, (E\e)i is the
set of states of a semi-Markov process, except for the state e, into which its transition from the state
Si is possible. The system of equations (4) is linear. To reduce its dimension, we transform the graph
of states and transitions of the regeneration process.

Since when determining the average value of the T0 regeneration period of a semi-Markov process,
its states S4, S6 and S18 are not taken into account, this allows combining the states S7, S8 and S10,
while preserving the transitions from these states to other states (e, S11, S22, S23). Similarly, we can
combine the states S2 and S5; as a consequence, the states S2 and S5, as well as the states S11 and
S12, S13 and S14; as a consequence, the states S15 and S17, S19 and S20. It should be noted that
these transformations of the graph of states and transitions of a random regeneration process will be
taken into account further in determining the parameters of a semi-Markov process (average times of
its stay in specified states and probabilities of its transition from one state to another). Since the flows
of failures and faults of a module are independent, the processes ν(t) and z(t) are also independent.
Therefore, we will analyze them individually.

4. Defining the parameters of the failure process

The graph of states and transitions of the process ν(t) is shown in Fig. 4, where S0 corresponds to the
functioning of the module in the absence of manifestation of failures; S1 corresponds to the detection
of failure of the controlled module by means of control hardware; S2 corresponds to the functioning
of the module according to the program of failure identification detected by the control hardware;
S3 corresponds to the termination of the module operation according to the main program and its
transition to the scheduled program control regime; S4 corresponds to the functioning of the module
with the failure having been missed by hardware and software control; S5 corresponds to the detection
at the scheduled program control in the module, which previously failed, of a new failure; S6 corresponds
to the detection by hardware of a new failure of the module that failed earlier; S7 corresponds to the
transition of the module with the failure detected by the control hardware into unscheduled program
control regime; S8 corresponds to the restoration of the operability of hardware of the module control;
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S9 corresponds to the restoration of performance of the controlled module; S10 corresponds to the
restoration of the operability of the module’s control hardware having failed; S11 corresponds to the
detection at the scheduled program control of hardware failure of the controlled module, which failed
before; S12 corresponds to the transition of the module with the failure having been missed by means
of hardware and software control to the mode of operation according to the program of identification
of a new failure detected by its control hardware; S13 corresponds to the transition of the module with
the failure having been missed by means of hardware and software control to the mode of unscheduled
program control due to the detection of new failures of this module by its control hardware.

S0

S11

S1 S2

S3

S4

S5

S6

S7

S8

S9

S10

S12

S13

e

q0.1

q0.3

q1.2

q3.4

q3.8

q4.6

q4.5

q3.9
q5.9

q2.7

q7.8

q10.4

q4.11

q6.12

q7.9

q13.9

q13.10

q11.10
q12.13

Fig. 4. Graph of states and transitions of random process ν(t).

By solving the corresponding system of Markov recovery equations, we obtain

T0 = τ0 + q0.1(τ1 + τ2 + τ7 + q7.8τ8 + q7.9τ9) + q0.3(τ3 + q3.8τ8 + q3.9τ9)

+ q0.3q3.4
[

τ4 + q4.5(τ5 + τ9) + q4.6(τ6 + τ12 + q13.9τ9

+ q13.10τ10 + τ13) + q4.11(τ10 + τ11)
]

/(1− q4.11 − q4.6 · q13.10). (5)

From the formulae (3) and (5), it follows that the probability Roi of retaining of an arbitrary
controlled module in the operable state is determined by its average duration in all specified states
and by the probabilities of its transitions between them. Let us proceed to determining the mentioned
parameters.

We will use the following notation. Denote by S = {S0, S1, . . . , S13} the set of states of the controlled
module, and by N13 = {1, . . . , 13} we denote the set of indices. For each state Si we denote by Ei ⊂ S

the subset of states into which the transition from the Si state is possible, and by the symbol Ii we
denote the set of states of the controlled module from which the transition to the Si state exists. We
introduce the function δ(S), S ∈ S as follows: δ(S) = 1, if S ∈ S; otherwise δ(S) = 0. By this function
we denote the set of the indices of states to which a transition from a given state i is possible:

IN(Ei) = {j ∈ N13 | δ(S) 6= 0, S ∈ Ei} .
First, we determine the average duration tν of a semi-Markov process that describes the behavior

of an arbitrary controlled module of a wireless communication system in the period T0 of regeneration
in the state S0. This time corresponds to the functioning of the module without any manifestation of
failures. To determine this time, we use the graph of states and transitions, which is shown in Fig. 3.
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According to the specified graph of states and transitions, the controlled module under the influence
of the failure flow after the random time ξ, whose distribution function is F (t) = P{ξ 6 t}, transits
from the state S0 to one of the states of the set E0 = {S2, S4, S5, S6, S7}. The transition from the state
S0 to the state S7, which corresponds to the scheduled program control of its correct functioning, is
carried out during the time ζ = ζ7, the distribution function of which is G(t) = P{ζ 6 t}. Therefore,
a random process that describes the behavior of a module in time transits in the direction of that flow
in which the event has occurred earlier than in other flows. In other words, the random process is
in the state S0 until the first of the events, which transits it into one of the states of the subset E0.
The controlled module is in this state over the time τ0 = min ξj

j∈IN (E0)

, belonging to the subset E0, whose

distribution function according to [2, p. 88] has the form

ψ0(t) = P
{

min[ξi | i ∈ IN(E0)] 6 t
}

= 1−
∏

S∈E0

i∈N13

[

1− δ(S)Fi(t)
]

= 1−
∏

i∈IN(E0)

(

1− Fi(t)
)

, (6)

where ξi is the random time from the moment of transition of the random process to the state S0 until
the moment of the first event occurs in each flow; Fi(t) is the distribution function of the random time
ξi, F7(t) = G(t). By using the formula (6), the relationships Ḡ(t) = 1 −G(t), F̄i(t) = 1− F i(t), and
IN(E0) = {2, 4, 5, 6, 7}, we can write

ψ0(t) = 1− F̄2(t) · F̄4(t) · F̄5(t) · F̄6(t) · Ḡ(t). (7)

Recently [2, p. 46], [15, p. 10] when modeling the flow of failures, the random variables have been
applied, which are distributed according to the Weibull law. Its distribution function has the form
F (t) = 1 − e−λ0tα , where t is the time before the failure, λ0 and α are parameters. The presence in
the distribution of two parameters makes it possible to achieve a more complete correspondence of
the theoretical distribution to the experimental data than in the case of the exponential law. Note [2,
p. 46], [15, p. 10], for α < 1 the intensity λ(t) of failures becomes a decreasing function of time, for
α > 1 the Weibull distribution is characterized by an increasing in time failure rate. For electronic
devices with the decreasing failure rate function [3, p. 21] α = 0.2÷ 0.4.

In contrast to the function F (t), the function G(t) that is also distributed by the Weibull law in
which the parameter α is the same and the parameter λ0 is unknown.

Since the random times {ξj | j ∈ IN(Ei)} correspond to the Weibull distribution with the parameters
αi and λ0,i, i.e., Fi(t) = 1− exp(−λ0,i · tαi), and assuming that the parameters α1 = α2 =, . . . , α7 = α
are the same, the expression (7) takes the form

ψ0(t) = 1− exp(− λ · tα), (8)

where λ =
∑

i∈IN(E0)
λ0,i is the total intensity of the random process transitions from the state S0,

and λ0,i is the intensity of its transitions from the state S0 to the state Si. The distribution function
G(t), as noted above, is also the Weibull distribution with the same parameter α and some parameter
λ0,7. Regarding the choice of the parameter λ0,7, we will choose it experimentally from the condition of
maximizing the average time of retaining the controlled module in operable condition. The transition
intensities λ0,i of the random process correspond to the transition intensities of this module from the
state S0 and are determined by means of the parameters of the control methods used and of the
reliable characteristics of this module and its hardware. The analytical relationships for determining
the specified transition intensities are as follows:

λ0.2 = λf pdfh; λ0.4 = λf(1− pdfh);
λ0.5 = λechα; λ0.6 = λech β,

(9)

where λechα and λech β are the intensities of the transitions of the random process from the state S0 to
the states S5 and S6, respectively, which correspond to the failure rates of the control hardware which
lead to errors of the first and second kinds, respectively. Note that here λf = λfm + λfch. Taking the
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relationship (9) into account, we write the expression to determine the total intensity of transitions of
a random process ν(t) from the state S0

λ = λf + λechα + λech β + λ0,7.

According to [11, p. 86], [16, p. 70], the average duration of the semi-Markov process in the i-th
state τ0 = min ξj

j∈IN(S0)

, is determined by the formula

τi =

∫ ∞

0
ψi(t) dt, (10)

where ψi(t) is the function of the distribution of the residence time of the semi-Markov process in the
Si state. Using (8), we can write that

τ0 = tν =

∫ ∞

0

{

1−
[

1− exp
(

− λ · tα
)]}

dt = Γ

(

1

α

)

λ−1/α

α
,

where Γ(x) =
∫∞
0 e−ttx−1dt is an Euler gamma function.

Now determine the average residence times τi of the semi-Markov process in the rest states. The
controlled module from the state S0, under the action of the failure flow detected by the control
hardware can transit either to the state S1, or at the time of the following scheduled program control
of the correct functioning of this module it can transit to the state S3. The semi-Markov process is in
the state S0 until the first of the events occurs, which transfers it into one of the states S1 or S3, and
retains in it over the minimal of ξ1 and ξ3 time, whose the distribution function is determined by the
expression (6).

ψ0(t) = P{min(ξ1, ξ3) 6 t} = 1− (1− F1(t) (1 − F3(t)) = 1− F̄1 · F̄3. (11)

Using the expression (11) and the relationship F3(t) = G(t), we can write

ψ0(t) = 1− F̄1(t) · Ḡ(t). (12)

Since the random times ξ1 and ξ3 correspond to the Weibull distribution with the parameters α and
λ0,i, i.e., F (t) = 1− exp(λ0,i · tα), and taking the parameters α to be equal, the expression (12) takes
the following form:

ψ0(t) = 1− exp (− λ1 · tα), (13)

where λ1 =
∑

i∈IN(E0)
λ0,i is the total intensity of the random process transitions from the state S0,

λ0,i is the intensity of its transitions from the state S0 to the state Si.
The intensity of transitions λ0,1 of the random process corresponds to the intensity of transitions

of this module from the state S0 to the state S1 and is determined by means of the parameters of the
control methods used and of the reliable characteristics of this module and its control hardware. Thus,
we have

λ0.1 = (λf + λechα)pdfh. (14)

The total intensity of transitions of a random process from the state S0 is as follows:

λ1 = (λf + λechα)pdfh + λ0.3. (15)

Regarding the choice of the parameter λ0.3, we will choose it experimentally from the condition of
maximizing the average residence time of the controlled module in operable condition.

Taking into account (10) and (13), we can write

τ0 =

∫ ∞

0

{

1−
[

1− exp
(

− λ1 · tα
)]}

dt =

∫ ∞

0
exp(−λ1 · tα) dt = Γ

(

1

α

)

λ
−1/α
1

α
.
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The average residence times τ1, τ2, τ3 of the semi-Markov process in the respective states S1, S2, S3
correspond to the average times of detection of the control module failure by the control hardware
tfdch, identification of detected failures tid, and of the software control of the correct functioning of the
controlled module tsc, respectively.

It is mentioned above that tfdch = 0. Therefore τ1 = tfdch = 0. The average times τ2 = tid
and τ3 = tsc are random variables with an arbitrary distribution function K(t) = P{χ 6 t} and
H(t) = P{ς 6 t}, respectively. The time τ2 = tid represents the average time of failure identification.
One of the most widespread and fully complying with the requirements of engineering practice of
the laws of the distribution of time necessary to control the correct functioning of radio-electronic
equipment, troubleshooting, repairing and its restoration is a lognormal distribution [2, p. 50], [17,
p. 38]. Taking the average time of identification of failures to be distributed according to a lognormal
law with the parameters (µ, σ), where µ, σ are the parameters of the shape and scale of lognormal
distribution, we obtain:

τi = tid =Mχi
=

∫ ∞

0
t fi(t) dt =

1

σ
√
2π

∫ ∞

0
exp

[

−(ln t− µ)2

2σ2

]

dt = eµ+σ2/2, i ∈ {2, 12} (16)

if

fi(t) =
(

tσ
√
2π
)−1

exp
{

− (ln t− µ)2
(

2σ2
)−1
}

, (17)

where fi(t) is the probability density of the lognormal distribution, σ and µ are the distribution
parameters.

The average residence times τ3, τ5, τ7, τ11, τ13 of the semi-Markov process in the states S3, S5, S7, S11,
and S13, respectively, correspond to the average duration tsc of the program control, and the average
residence time τ6 in the state S6 corresponds to the average time tfdch of detection of the failures of
the controlled module by its control hardware.

It is stated above that the distribution of the time required to perform the program control of the
correct functioning of the controlled module is lognormal. Therefore, similarly to (16) and taking into
account that the average time of program control is distributed according to the lognormal law with
other parameters (σ1,µ1), we obtain:

τi = tsc =Mςi =
1

σ1
√
2π

∫ ∞

0
exp

[

−(ln t− µ1)
2

2σ21

]

dt = eµ1+σ2

1
/2, i ∈ {3, 5, 7, 11,13},

where fi(t) is the probability density, which is determined by the formula (17).
Since the average time τ6 corresponds to the average time tfdch of detection of failure by the control

hardware, according to the assumption above, it can be written that τ6 = tfdch = 0.
As it can be seen from the graph of states (Fig. 4), the semi-Markov process is being in the state

S4 until the first of the events occurs which transfers it into one of the states of the subset E4. The
controlled module retains in this state over the time τ4 = min ξj

j∈IN(E4)

, belonging to the subset E4 whose

distribution function, according to (6), is of the form:

ψ4(t) = P
{

min [ξj| j ∈ IN(E4)] 6 t
}

= 1−
∏

S∈E4

i∈N13

[

1− δ(S)Fi(t)
]

= 1− F̄5(t) · F̄6(t) · F̄11(t). (18)

Since the times before the transition of the semi-Markov process from the state S4 to the states S5,
S6 and S11 are distributed by the Weibull law with the same parameter α, the expression (18) can be
written in the following form:

ψ4(t) = 1− exp(− λ2 · tα), (19)

where λ2 =
∑

i∈IN(E4)
λ4,i is the total intensity of transitions of the semi-Markov process from the

state S4, and λ4.i is the intensity of its transitions from the state S4 to the state Si, i ∈ IN(E4).
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The transitions intensities λ4.i are determined by the parameters λf, λechα and by the parameters of
the flow of random events which correspond to the reliable characteristics of the controlled module and
its controls. Analytical relationships for determining the intensities of transitions of the semi-Markov
process are:

λ4.5 = (λf + λechα)pfds; λ4.6 = (λf + λechα)pdfh; λ4.11 = (λfch + λechα)pfds, (20)

where λfch is the failure rate of hardware to control the correct functioning of the controlled module.
Taking into account the relations (10) and (19), the average residence time τ4 of the semi-Markov

process in the state S4 is determined by the formula

τ4 =

∫ ∞

0

{

1−
[

1− exp
(

− λ2 · tα
)]}

dt =

∫ ∞

0
exp(−λ2 · tα) dt = Γ

(

1

α

)

λ
−1/α
2

α
.

Using the relationship (20), we write an expression to determine the total intensity λ2 of transitions
of the random process v(t) from the state S4

λ2 = (λf + λechα)(pfds + pdfh) + (λfch + λechα)pfds. (21)

The average residence times τ8, τ10 of the semi-Markov process in the states S8 and S10, respectively,
correspond to the average recovery time trch of the hardware to control the correct functioning of the
controlled module, and the average residence time τ9 of the semi-Markov process in the state S9
corresponds to the average recovery time trhm of the operability of the controlled module, i.e., τ8 =
τ10 = trch and τ9 = trhm. The indicated times are continuous random variables with the distribution
function L(t) = P{η 6 t}.

Similarly to (16), and taking into account that the average recovery time of the controlled module
and its control hardware is distributed by the lognormal law with other parameters (σ2, µ2), we obtain:

τi = trch = trhm =Mηi =
1

σ2
√
2π

∫ ∞

0
exp

[

−(ln t− µ2)
2

2σ22

]

dt = eµ2+σ2

2
/2, i ∈ {8, 9, 10}.

Knowing the average residence time of the semi-Markov process in all specified states Si, as well
as the intensities of its transitions between them, we proceed to determining the probabilities of the
transitions qi.j of this process between the specified states.

It is known [2, p. 75] that the probability of transition of a semi-Markov process from the state Si
to the state Sj is determined by the formula

qi.j(t) =

∫ ∞

0
p(t; i.j) dψi(t), (22)

where p(t; i.j) is the conditional probability of transition of a semi-Markov process from the state Si
to the state Sj provided that at the moment t it was in the state Si, and ψi(t) is the function of
distribution of residence time of the semi-Markov process in the state Si.

Since the time of transition of the semi-Markov process from the state S0 to the state S1 is dis-
tributed by the Weibull law, the probability of transition of this process from the state S0 to the
state S1 is determined by the formula

q0.1 =

∫ ∞

0
exp(−λ0.1 · tα) dψ0(t),

where ψ0(t) is determined by the formula (13), and the transition intensity λ0.1 of the semi-Markov
process from the state S0 to the state S1 is determined by the formula (14).

Since dψ0(t) = λ1 α t
α−1 exp(−λ1 tα) dt, then

q0.1 =

∫ ∞

0
e−λ0.1·tαλ1 α t

α−1e−λ1·tαdt = λ1(λ1 + λ0.1)
−1.
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The total intensity λ1 of transitions of a random process from the state S0 is determined by
the formula (15). According to the graph of states and transitions of the semi-Markov process v(t)
(Fig. 4), the transition probabilities q0.1 and q0.3 form a complete group of events. Therefore, we can
write q0.3 = 1− q0.1.

From the state S3, the controlled module can transit to the state S9 or S9 (if during the period T
of the program control of its correct functioning there occurs a failure of the controlled module or its
control hardware, which will be missed by these control hardware), or to the state S4 (if failure of the
controlled module will be missed even at scheduled program control of its correct functioning). With
this, the probability that a failure of the controlled module to occur during the program control period
and will not be detected by the hardware control can be determined by the formula

psc =

∫ ∞

0

{

1− [1− exp(− λfmβ · tα)]
}

dψ3(t),

where λfmβ is the failures rate of the controlled module that are not detected by the control hardware.
Analytical relationships for determining the intensities of transitions of the semi-Markov process from
the state S3 are as follows:

λ3.4 = (λf + λechα)(1− pdfh)(1 − pfds); λ3.8 = (λfch + λechα)(1− pdfh);
λfmβ = λ3.9 = (λf + λechα)(1 − pdfh) + λech β.

(23)

As it can be seen from the graph of states and transitions (Fig. 4), the semi-Markov process retains
in the state S3 until the first of the events occurs which transfers it into one of the states of the
subset E3. Thus

ψ3(t) = 1− F̄4(t) · F̄8(t) · F̄9(t).

Since the times before the transition of the semi-Markov process from the state S3 to the states S4,
S8 and S9 have the Weibull distribution with the same parameter α, the expression for the determi-
nation of ψ3(t) can be written in the following form:

ψ3(t) = 1− exp(−λ3 · tα),

where λ3 =
∑

i∈IN(E3)
λ3.i is the total intensity of transitions of the semi-Markov process from the

state S3, and λ3,i is the intensity of its transitions from the state S3 to the state Si, i ∈ IN(E3). Given
the relation (23), we write the expression to determine the total intensity of transitions λ3 of a random
process from the state S3:

λ3 = (1− pdfh)
{

(λf + λechα)[(1 − pfds) + 1] + λfch + λechα

}

+ λech β.

Since the time of transition of a semi-Markov process from the state S3 to the state S9 is distributed
by the Weibull law, the probability q3.9 of transition of this process from the state S3 to state S9 is
determined by the formula

q3.9 =

∫ ∞

0
exp(−λ3.9 · tα) dψ3(t).

Since dψ3(t) = λ3 α t
α−1 exp(−λ3 tα)dt,

q3.9 =

∫ ∞

0
e−λ3.9·tαλ3 α t

α−1e−λ3·tαdt = λ3(λ3 + λ3.9)
−1.

Similarly, we define the transition probability q3.8 = λ3(λ3 + λ3.8)
−1 . Since the transition proba-

bilities q3.4, q3.8 and q3.9 form a complete group of events, q3.4 = 1− q3.8 − q3.9.
Analytical relations for determining the transient intensities of the semi-Markov process from the

state S4 are given in (20). As can be seen from the graph of states and transitions (Fig. 4), the semi-
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Markov process retains in the state S4 until the first of the events occurs which transfers it into one of
the states of the subset E4. Thus

ψ4(t) = 1− F̄5(t) · F̄6(t) · F̄11(t).

Since the transition times of the semi-Markov process from the state S4 to the states S5, S6 and S11
are distributed by the Weibull law with the same parameter α, the expression for the determining ψ4(t)
can be written in the following form:

ψ4(t) = 1− exp(−λ2 · tα),

where λ2 is determined according to the formula (21).
Since the time of transition of the semi-Markov process from the state S4 to the state S5 is dis-

tributed by the Weibull law, the probability q4.5 of transition of this process from the state S4 to the
state S5 is determined by the formula

q4.5 =

∫ ∞

0
exp(−λ4.5 · tα) dψ4(t).

Since dψ4(t) = λ2 α t
α−1 exp(−λ2 tα) dt,

q4.5 =

∫ ∞

0
e−λ4.5·tαλ2 α t

α−1e−λ2·tαdt = λ2(λ2 + λ4.5)
−1.

Similarly, we define the transition probability q4.6 = λ2(λ2 + λ4.6)
−1 . The transition probabilities

q4.5, q4.6 and q4.11 form a complete group of events. Therefore q4.11 = 1− q4.5 − q4.6 .
The probability q7.8 of transition of the semi-Markov process from the state S7 to the state S8 is

determined by the formula

q7.8 =

∫ ∞

0

[

1− exp(−λdft
α)
]

dH(t) =
1

σ2
√
2π

∫ ∞

0

[

1− exp(−λdft
α)
]

exp

[

−(ln t− µ2)
2

2σ22

]

dt

t
,

where λdf is the intensity of detected failures (λdf = λf · pdfh), H(t) is the lognormal distribution law
with parameters (σ2, µ2), and q7.9 = 1− q7.8 because the probabilities of transitions q7.8 and q7.9 form
a complete group of events.

By analogy

q13.9 =

∫ ∞

0

[

1− exp(−λ13.9tα)
]

dH(t) =
1

σ2
√
2π

∫ ∞

0

[

1− exp(−λ13.9tα)
]

exp

[

−(ln t− µ2)
2

2σ22

]

dt

t
,

where λ13.9 = λf · pfds, q13.10 = 1 − q13.9. Thus, we have obtained the average residence times in the
specified states and the probabilities of transitions between them for a random process v(t).

5. Determining the parameters of the process of faults

Let us proceed to determining the parameters of a random process z(t) of restoring a controlled module
from the consequences of faults. The graph of states and transitions of this process is shown in Fig. 5.

S0S1 S2 S3

q0.1

q1.0

q0.2 q2.3

q3.0

Fig. 5. Graph of states and transitions of random process z(t).

The states of the random process z(t)
correspond to the following states of the
controlled module. S0 corresponds to
the functioning of the module in the ab-
sence of faults; S1 corresponds to the
functioning of the module with a missed
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fault; S2 corresponds to the detection by hardware means of a hardware fault of the controlled module;
S3 corresponds to the restoration of the controlled module of a fault having been detected by the
module’s hardware control.

To distinguish between the parameters (average residence times τi of a random process in the
specified states Si and the probability of transitions qi.j of this process between them) of the semi-
Markov processes v(t) and z(t), we denote the indicated process z(t) parameters by a wavy line from
above.

First, by analogue to the previous section, by solving a linear system of Markov recovery equations,
we find

T̃0 = T̃rec = (τ̃0 + q̃0.1 · τ̃1 + q̃0.2 · τ̃3) / (1− q̃0.1),

where T̃rec is a period of recovery of the controlled module from the consequences of failure.
Determine the average residence times τi of the semi-Markov process z(t) in the specified states.
The controlled module is in a state S0 over the time τ0 = min ξj

j∈IN(S0)

, which belongs to the subset E0,

the distribution function of which is determined by the formula (6):

ψ̃0(t) = P {min[ξj | j ∈ IN (S0 )] 6 t} = 1−
∏

j∈IN(S0)

(

1− F̃j(t)
)

,

To simulate the fault of the equipment of a telecommunication system, we use the Erlang distribu-
tion with parameters (ñ, µ̃), ñ is a natural number (order of distribution), and µ̃ ∈ (0,∞). That is,
the random variables ξj, j ∈ IN(S0) are random variables with the following distribution function

F̃j(t) = F̃ (t) = 1− e−µ̃t
ñ−1
∑

k=0

(µ̃t)k

k!
.

Therefore

ψ̃0(t) = 1−
(

1− F̃ (t)
)2

= 1−
(

e−µ̃t
ñ−1
∑

k=0

(µ̃t)k

k!

)2

.

According to (10), let us calculate the average residence time τ̃0 of the process z(t) in the state S0.

τ̃0 =

∫ ∞

0
exp (−µ̃t)

ñ−1
∑

k=0

(µ̃t)k

k!
dt =

ñ−1
∑

k=0

∫ ∞

0

(µ̃t)k

k!
e−µ̃t dt

=

ñ−1
∑

k=0

1

µ̃k!

∫ ∞

0
xke−x dx =

1

µ̃

ñ−1
∑

k=0

Γ(k + 1)

k!
=
ñ

µ̃
.

Assuming that the time of execution of tasks by a controlled module is distributed according to the
normal law with parameters (ã, σ̃2), we obtain that τ̃1 = ã, where ã is the average value of the random
variable, and σ̃2 is its mean deviation.

The average residence time τ̃2 of the process z(t) in the state S2 amounts to tfdch, i.e., τ̃2 = tfdch = 0.
Given that the average recovery time τ̃3 of the controlled module from the consequences of faults

is distributed by a lognormal law with the parameters (µ̃, σ̃), we obtain:

τ̃3 = t̃rec = M̃3 =

∫ ∞

0
t f3(t) dt

=
1

σ̃
√
2π

∫ ∞

0
exp

[

−(ln t− µ̃)2

2σ̃2

]

dt = eµ̃+σ̃2/2.
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The probabilities of transitions q̃0.2 are determined according to (22), in which the probabilities
included in (22) are distributed by the Erlang law with the same parameters (ñ, µ̃). We have

q̃0.2 = 2µ̃

∫ ∞

0

(

1− e−µ̃t
ñ−1
∑

k=0

(µ̃t)k

k!

)

e−2µ̃t
ñ−1
∑

k=0

(µ̃t)k+ñ−1

(ñ − 1)! k!
dt.

According to the graph of states and transitions of the semi-Markov process z(t) (Fig. 5). The
transitive probabilities q̃0.1 and q̃0.2 form a complete group of events. Therefore q̃0.1 = 1− q̃0.2.

Since the average stay of the random process z(t) in the state S0 over the period T̃rec amounts to
τ̃0, the average residence time tz of the random process z(t) over the period T0 of regeneration in the
state S0 tz = τ̃0T0T̃

−1
rec = Ñ τ̃0, where Ñ is the number of detected failures of the controlled module

during the regeneration period T0.
Thus, finding the main features of the semi-Markov process is completed. The probability of the

stay of an arbitrary controlled module of the telecommunication system in the subset E0 of the operable
states is also obtained.

6. Conclusions

A reliability semi-Markov model has been constructed for a wireless telecommunication system with
a complex control system. An analytical expression has been obtained to estimate the probability
of retaining an arbitrary controlled module of the system in its operable state. This expression is
described by the parameters of a semi-Markov process (the average duration of this process in the
specified states and the probabilities of its transitions between them), which are fully determined in
terms of the reliability characteristics of the controlled module and in terms of the corresponding
characteristics of the used means of control of its correct functioning.

The constructed semi-Markov reliability model will be used during the system design of high-
reliability systems of wireless telecommunication.
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Напiвмарковська надiйнiсна модель функцiонування
телекомунiкацiйної системи безпроводового зв’язку

iз комплексною системою контролю

Бобало Ю. Я., Горбатий I. В., Кiселичник М. Д., Мединський I. П., Мелень М. В.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна

Для високонадiйної телекомунiкацiйної системи з комплексною системою контро-
лю побудовано математичну надiйнiсну модель у виглядi напiвмарковського проце-
су вiдмов i вiдновлень, знайдено основнi характеристики цього процесу й отримано
аналiтичний вираз, за допомогою якого можна оцiнити iмовiрнiсть перебування сис-
теми в працездатному станi. Цей вираз залежить вiд параметрiв напiвмарковського
процесу, якi визначаються через надiйнiснi характеристики контрольованих модулiв,
їх апаратних засобiв контролю i параметри застосованих засобiв контролю правиль-
ностi функцiонування розглядуваної системи.

Ключовi слова: високонадiйна система, комплексна система контролю, напiв-

марковський процес, рiвняння марковського вiдновлення, система безпроводового

зв’язку.
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