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By means of the method of Zubarev’s nonequilibrium statistical operator, the generalized
Fokker–Planck equation for the distribution function of liquidity accumulations has been
obtained. The generalized velocity and transport kernels describing dynamic correlations
between liquidity accumulations of different categories of families have been determined.
The system of non-Markov transport equations for non-equilibrium average values of liqui-
dity accumulations for different categories of families has been obtained. Memory effects
have been analyzed using the fractional calculus, which has led to a system of trans-
port equations for non-equilibrium average values of liquidity accumulations for different
categories of families in fractional derivatives.
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1. Introduction

In the field of modern theoretical economics, significant successes are associated with an intensively
developing direction which is called “physical economy” [1], which is based on nature laws (laws of
physics and basic equations of physical processes transfer). It is natural that modern methods of
statistical physics that describe the states of interacting open systems (equilibrium and non-equilibrium,
stationary and non-stationary) are used now to describe the evolution of economic systems, in parti-
cular the financial markets [2–4]. This direction was formed in the process of developing evolutionary
economy [5,6] and synergetic economy [7–10]. The importance and role of the use of modern methods
of non-equilibrium statistical physics for the description of economic processes have been substantiated
by the authors of the work [11], which presents the dynamic models of micro- and macroeconomics
in Russia. Problems of describing economic processes and their prediction, in particular in Ukraine,
using statistical methods of mechanics and thermodynamics, are given in [12–16].

In recent years, the economic processes with memory have been actively studied [17–29]. Fractional
calculus and fractional differential equations [30–33], which use derivatives and integrals of non-integer
orders, are convenient means for description of memory processes in both physical sciences and socio-
economic sciences. A detailed, modern review of the problem of description of economic processes with
memory is given in the Tarasovs’ work [29].

In this paper, using the Zubarev’s non-equilibrium statistical operator [34–36], we have obtained a
generalized (non-Markov) Fokker–Planck equation for the function of distribution of liquid accumula-
tion with the definition of generalized velocity and transport kernels describing the dynamic correlations
between liquidity accumulations Uf and Uf ′ of different f, f ′ categories of families. These functions
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are determined in terms of the weight function W (U), which can be calculated by means of methods
of functional integration. The non-Markov transfer equations are obtained for non-equilibrium ave-
rage values of liquidity accumulation in different categories of families. Memory effects in transfer
equations have been analyzed using fractional calculus [30–33, 37]. As a result, we have obtained the
transport equation for non-equilibrium average values of liquidity accumulation in different categories
of Langevin families in fractional derivatives.

2. Non-equilibrium function of distribution of liquidity accumulation

In any modern state, the economic structure is determined by the distribution of elements of this state
(families) in terms of liquidity accumulation, which are described by the distribution function ρ(U ; t),
where U are accumulations, which include monetary units and securities, which can be quickly and
easily converted into money. Property, i.e., a car, an apartment, a house, etc., is not included in
liquidity accumulation.

According to the liquidity accumulation, the families can be divided into:

1) rich (high-paid members of the family);
2) wealthy (average paid members of the family);
3) poor (low paid members of the family).

As an indicator of the economic stability of modern, highly developed, successful countries is the
relatively high percentage of wealthy families. To describe the economic structure in highly developed
countries, the function ρ(y; t) of families distribution in terms of income is used, where y is the income of
the family per unit of time. In this case, the distribution with respect of income is directly determined
according to the tax declarations. The distributions ρ(U) and ρ(y) are different though they are
interconnected. The functions ρ(U) and ρ(y) can be found using different methods (surveys, data
analysis, and expert evaluations). In the developed countries, where the tax system is well organized,
the distribution according to the income is directly determined by tax declarations. The distribution
according to accumulation can be obtained from the analysis of deposits. In Ukraine, methods give
inaccurate results and the method of reconstruction of the economic structure of society (ESS) based
on indirect data and expert assessments is more effective.

Since the functions of the distribution ρ(Û ; t) and ρ(y; t) are related, then in order to describe the
economic structure of society we use the distribution functions ρ(Û ; t). Obviously, different categories
of families in the economic processes of the state will take different average accumulation values over
a certain observed time t:

〈Ûm〉t, 〈Ûs〉t, 〈Ûn〉t, (1)

where Ûm, Ûs, Ûn are random functions of accumulation of high paid, middle and low payed
families, respectively. The average values in (1) are calculated using the distribution function
ρ(Û ; t) = ρ(Û = {Ûf}; t):

〈. . .〉t =

∫
. . . ρ(Û ; t) dÛ . (2)

The functions Ûm, Ûs, Ûn in the economic processes undergo nonlinear fluctuations and are related
to the purchasing capacity rf =

Uf

p , where p is the price of the product, f = {m, s, n}. In order to take
them into account when calculating the average (1), the averaging operation we present in functional
form:

〈. . .〉t =

∫
. . . ν(U)ρ(U ; t) dU, (3)

ν(U) =
∏

f

δ(Ûf − Uf ), (4)

dU = {dUmdUsdUn},
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where the functional ρ(U ; t) in the method of a nonequilibrium statistical operator [34] satisfies the
generalized non-Markov equation of Fokker–Planck

∂

∂t
ρ(U ; t) +

∑

f

∂

∂Uf
Vf (U)ρ(U ; t)

=
∑

f,f ′

∂

∂Uf

1

W (U)

∫
dU ′

∫ t

−∞
eε(t

′−t)Lf,f ′(U,U
′; t, t′)

∂

∂Uf ′

{
ρ(U ; t′)

W (U)

}
dt′. (5)

Here Vf (U = Û) is the velocity of liquidity accumulation changes by f = {m, s, n}th family category:

Vf (U) =

〈
ν(U)

˙̂
Uf
〉

W (U)
, (6)

where ˙̂
Uf = Pf (Û) −Qf (Û), (7)

Pf (Û) is the income of f -th family, Qf (Û) is the function of demand for the f -th family, 〈. . .〉 =∫
. . . δ(Û − U)dÛ .

W (U) =

∫
δ(Û − U) dÛ (8)

is the weight function. Lf,f ′(U,U
′; t, t′) are the generalized transport kernels describing dynamic cor-

relations between liquidity accumulations Uf and Uf ′ of different f, f ′ categories of families:

Lf,f ′(U,U
′; t, t′) =

〈
xf (U)T (t, t′)xf ′(U

′)
〉
, (9)

where
xf (U) = (1 − Π) ν(U)

˙̂
Uf ,

ΠA =

∫
dU

1

W (U)
〈Aν(U)〉ν(U). (10)

Here Π is the projectional operator. T (t, t′) = e−(1−Π)iL(t−t′) is the operator of evolution in time, iL
is the Liouville operator, which corresponds to model Hamiltonian of the problem:

H =
1

2

∑

f

V̂ 2
f +

∑

f,f ′

Φ(f, f ′)Ûf Ûf ′ +
∑

f,f ′f ′′

Φ(f, f ′, f ′′)Ûf Ûf ′Ûf ′′ + . . . (11)

V̂f =
d

dt
Ûf (12)

is the velocity of liquidity accumulation of the f -th family. Φ(f, f ′), Φ(f, f ′, f ′′) are “potentials” of
liquidity accumulation interaction for different categories of families. With this, the condition if satisfied
〈H〉 = E = const, E is total “energy” of liquidity accumulation. The equation of Fokker–Planck (5)
describes the memory effects in the dynamics of correlations between the liquidity accumulations of
different categories of families. In the Markov approximation, when the effects of the memory are not
taken into account, the equation (5) is of the form:

∂

∂t
ρ(U ; t) +

∑

f

∂

∂Uf
Vf (U)ρ(U ; t) =

∑

f,f ′

∂

∂Uf
Lf,f ′(U)

∂

∂Uf ′

{
ρ(U ; t)

W (U)

}
, (13)

where

Lf,f ′(U) =
1

W (U)

∫
dU ′

∫ t

−∞
eε(t

′−t)
〈
xf (U)T (t, t′)xf ′(U

′)
〉
, (14)

are the coefficients of transfer of liquidity accumulations.
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3. Generalized transfer equations

For a more detailed study of the structure of the functions of liquidity accumulations, we assume that
the total amount of money in the state is M(t), and it is distributed among all the categories of families
according to the rule:

M(t) = m〈Ûm〉t + s〈Ûs〉t + n〈Ûn〉t, (15)

d

dt
M(t) = m

d

dt
〈Ûm〉t + s

d

dt
〈Ûs〉t + n

d

dt
〈Ûn〉t

= JM (t) − J>M (t) + J<M (t), (16)

where JM (t) is total flow of money within the state, J>M (t) is the total flow of money out of the state
and J<M (t) is the total inflow of money to the state. N = m + s + n is the total number of families
in the state. By analyzing (7), we can see that the income and demand of each family, according to
the equation of non-equilibrium economic processes (13) is the basis of liquidity savings, a significant
proportion of which in highly developed countries enters into money circulation through production,
new scientific technologies, and securities. And this, in turn, affects the total flow of money JM (t),
J>M (t), J<M (t), balance of which determines the stability of the state. Pf (Û) and Qf (Û) are interrelated
that can be explored on a simple physical model of market economy of the closed society. The structure
of the Fokker–Planck equation greatly depends on the calculations of the structural function W (U) [36].
The Gaussian approximation for W (U) can be obtained by the method of collective variables in the
form [36]:

WG(U) = Z−1 exp



−1

2

∑

f,f ′

[
M̃2

]−1

ff ′
UfUf ′ −

1

2
ln π det M̃2



 , (17)

[
M̃2

]−1

ff ′
are the elements of matrix inverse to the matrix M̃2, the elements of which are paired correla-

tion functions Mff ′

2 = 〈Ûf Ûf ′〉0, 〈. . .〉0 =
∫
. . . ρ0(Û)dÛ , ρ0(Û) is equilibrium distribution of accumula-

tion for all categories of families, Z is its statistical sum. Having calculated in Gaussian approximation
all the characteristics in the Fokker–Planck equation (5), for the average values 〈Ûm〉t, 〈Ûs〉t, 〈Ûn〉t we
obtain a system of non-Markov transport equations for the average values of liquidity accumulations
of different categories of families:

∂

∂t

〈
Ûf
〉t

+
∑

f ′

iΩff ′
〈
Ûf ′
〉t −

∑

f ′

∫ t

−∞
eε(t

′−t)Ξff ′(t, t
′)
〈
Ûf ′
〉t′
dt′ = 0, (18)

where
iΩff ′ =

∑

f ′′

〈 ˙̂
Uf Ûf ′′

〉
0

[
M̃2

]−1

f ′′f ′
(19)

is the frequency matrix,

Ξff ′(t, t
′) =

∑

f ′′

〈
If (Û)T0(t, t′)If ′′(Û )

〉
0

[
M̃2

]−1

f ′′f ′
(20)

are memory functions that describe dissipative processes when changing savings between different
categories of families in the society.

If (Û) = (1 − P )
˙̂
Uf

are the generalized flows, P are projection operator Mori [35, 36], which has the following structure:

PÂ =
∑

f ′′f ′

〈
ÂÛf ′′

〉
0

[
M̃2

]−1

f ′′f ′
Ûf ′

and has the following properties P (1 − P ) = 0, PÛf = Ûf .
The obtained system of equations (18) for the average values of accumulations is closed and takes

into account collective dissipative processes of changes in accumulations among different categories of
families. It contains memory and can be applied to the description of the processes of sharing the
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accumulation between different categories of families in the society for the given rules (11), guaranteed
by the state. Calculation of memory functions (20) is complex, therefore, for the analysis of memory
effects in the process of changing the accumulation between different categories of families, we take
certain approximations for functions (20). To do this, using the Fourier transform with respect to time
to the equation (18), we obtain:

iω
〈
Ûf
〉
ω

+
∑

f ′

iΩff ′
〈
Ûf ′
〉
ω
−
∑

f ′

Ξff ′(ω)
〈
Ûf ′
〉
ω

= 0. (21)

Note that in Gaussian approximation, the functions iΩff ′ = 0. Further, for them Ξff ′(ω) we take:

Ξff ′(ω) = Wff ′(ω) Ξ̄ff ′ , (22)

where Ξ̄ff ′ = Ξff ′(ω = 0). Having modeled Wff ′(ω) in the form:

Wff ′(ω) =
(iωτf ′)

γ−1

iω(1 + (iωτf )ξ−2)
, 0 < γ < 1, 0 < ξ < 1, (23)

the equation (21), we rewrite as follows:

(iω)2
(
1 + (iωτf )ξ−2

)
〈Ûf 〉ω =

∑

f ′

τγ−1
f ′ (iω)γ−1Ξ̄ff ′〈Ûf ′〉ω. (24)

Here τf characteristic relaxation times of changes in liquidity savings, and 〈Ûf 〉ω is Fourier mapping
for non-equilibrium average values of liquidity accumulations of the family from the category f . Then
we use the Fourier transform to fractional derivatives of functions:

L(0D
ξ−1
t f(t); iω) = (iω)ξ−1L(f(t); iω), (25)

where ω is the frequency and 0D
ξ−1
t f(t) = 1

Γ(ξ)
d
dt

∫ t
0

f(τ)
(t−τ)1−ξ dτ is the Riemann–Liouville fractional

derivative.
Using it, the inverse transform in the equation (24) to time dependencies gives the transport

equation in fractional derivatives:

∂2

∂t2
〈
Ûf
〉t

+ τ ξ−2
f 0D

ξ
t

〈
Ûf
〉t

=
∑

f ′

τγ−1
f ′ 0D

γ−1
t Ξ̄ff ′

〈
Ûf ′
〉t
,

The system of transport equations (26) for non-equilibrium average values of liquidity savings of differ-
ent categories of families is closed. The key issue for further research is the calculation of the transport
kernels Ξ̄ff ′ , which describe the correlations between the velocities of liquidity accumulation of different
categories of families at zero frequency.

4. Conclusion

Using the method of Zubarev’s non-equilibrium statistical operator, we have obtained a generalized
(non-Markov) Fokker–Planck’s equation for the nonequilibrium distribution function of liquidity ac-
cumulations in different categories of families. The definition of generalized velocity and transport
kernels are given, which describe the dynamic correlations between liquidity accumulation Ûf and

Ûf ′ of different f and f ′ categories of families. These functions are determined in terms of weight
function W (U), which can be calculated by functional integration methods. In Gaussian approxima-
tion for W (U) using the Fokker–Planck equation, the system of non-Markov transport equations for
non-equilibrium average values of liquidity accumulations for different categories of families has been
obtained. Memory effects have been analyzed using the fractional calculus, which has led to a sys-
tem of transport equations for non-equilibrium average values of liquidity accumulations for different
categories of families in fractional derivatives.
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Узагальнене рiвняння Фоккера–Планка для функцiї розподiлу
лiквiдних накопичень

ГнатiвБ.1, ДiдикА.2, ТокарчукМ.1,3
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вул. Свєнцiцького, 1, Львiв, 79011, Україна

За допомогою методу нерiвноважного статистичного оператора Зубарева отримано
узагальнене рiвняння Фоккера–Планка для функцiї розподiлу лiквiдних накопичень.
Визначено узагальнену швидкiсть та ядра переносу, що описують динамiчнi кореля-
цiї мiж лiквiдними накопиченнями рiзних категорiй сiмей. Отримано систему немар-
ковських рiвнянь переносу для нерiвноважних середнiх значень лiквiдних накопичень
для рiзних категорiй сiмей. Ефекти пам’ятi проаналiзовано iз застосуванням апарату
дробового числення, що привело до системи рiвнянь переносу для нерiвноважних се-
реднiх значень лiквiдних накопичень для рiзних категорiй сiмей у дробових похiдних.

Ключовi слова: рiвняння переносу, ефекти пам’ятi, лiквiднi накопичення, дробовi
похiднi.
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