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Computation of large electric fields in complicated 3D arrangements (especially
with geometrically incommensurable subregions) by classic numerical techniques based
on differential methods often fails due to lack of boundary conditions and problems
with meshing. For some of these cases the paper offers integral or special approach.
Particular algorithmsareillustrated on two examples whose results ar e discussed.

Introduction. Investigation of large electric fields containing charged conductors of general
3D shapes is uneasy. Due to complex arrangements the analytica methods are practically
inapplicable, and also classic numerical methods do not often lead to acceptable results. FDM- or
FEM-based techniques may fail because of lack of the boundary conditions and severe problems
with meshing (thin conductors versus large volume of ambient air). In such cases, integral [1, 2]
and special methods can be used to cope with the task.

The integral techniques are in this case based on solution of a system of the first-kind
Fredholm equations providing distribution of surface charge. Their analysis is supplemented with
computation of the electric field between two generally placed charged cubes.

As known, corresponding weakly singular kernel functions are integrable only over 2D
regions. Thisisin accordance with the physical reality because every conductor is characterised by
nonzero surface. But discretisation of such surfaces often leads to very large system of equations
whose processing on common PCs may be unfeasible.

For such cases the paper offers another aternative method suitable for mapping fields
generated, for example, by a system of thin charged conductors of any shape in 3D domain. These
conductors are first replaced by infinitely thin filaments and these are again replaced by sets of
point charges located along helicoidal curves surrounding them. Their values are calculated on the
condition that potential at the place of any filament is equa to potentia of the corresponding
conductor. The field quantities at any point in the area may then easily be calculated from the
Coulomb law. Even this technique isillustrated on an example.
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Integral model. Consider a system of n mutually electrically isolated well conductive metal
conductors Cy, C,,..., C, carrying constant electric potentials ¢y, ¢,..., ¢n (Fig. 1). The system is
placed in a homogeneous medium of relative permittivity &. Dimensions of the conductors are
finite and their surfaces smooth by parts. It is necessary to map the electric field in the area of the
conductors.
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Fig. 1. General arrangement of the charged bodies

The first step is to find functions ai(S), | = 1, 2,..., n, describing the distribution of electric
charges along surfaces § of conductors C;. Thisis realised by solution of a system of the first-kind
Fredholm integral equati onsintheform
zj G(rp.lo)-0j(S;)dS, PeS, QeS;, i,j=1...n (1)
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with weakly-singular kernel functions

1
where P is the reference point and Q is variable point that passes through all surfaces S =1
2,..., n. Discretised form of (1) reads (each surface being covered by N; elements, i = 1,..., n)
(P G o, T, ds, P S, I,j=
¢I( ) 47[808r JZ;LKZ;L'[ « P Q) o ES Qe i J 1| (3)

The basic advantage of the function G(rp,rg) is its integrability in 2D. Solvability of the
system (1) and unambiguousness of the continuous model was proved in [3]. Discretisation is
performed in the standard manner. The surfaces are approximated by triangular or quadrilateral
(and generaly unstructured) meshes. Real distribution of the charge density in particular cells is
substituted by polynomial functions. Proper and improper integrals are calculated analytically for
both triangular and rectangular cells.

The second step is to find the field quantities (potential, electric field strength, partial or total
capacitances etc.) by means of relatively smple integral expressions.

[lustrative example. Consider two charged cubes in a position depicted in Fig. 2 placed in the
air. Thelength of the edge of both cubesis 0.02 m and the distance between their centres 0.035 m.

All walls were discretised uniformly. Geometrical convergence was tested for increasing
number of cells (12 cellsin each edge being enough).

Fig. 3 shows two planes A (z = 0.004 m) and B (x = 0.004 m) where we determined
distribution of potential from the precomputed surface charge density by means of analytical
expressions. The program was written in MATLAB.
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Fig. 2. Arrangement of the charged cubes
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Fig. 3. Two planes with calculated potential distribution

Fig. 4 depicts distribution of the electric potential in plane A obtained from values of the
potential at a relatively large set of selected points. The equipotentia lines consisting of short
straight lines were constructed by means of alinear interpolation. Fig. 5 contains distribution of the
same quantity and electric field strength along the abscissa between points M and N representing
the centres of the nearest parallel edge and side of both cubes. Obvious is inaccuracy at point M
(there is about -46 V instead of -50 V). This inaccuracy caused by using low degree polynomial
substitution of the surface density in each cell and round-off errorsisthe smaller the finer mesh we
use. Particular components of the electric field strength at any selected point were calculated
directly from the distribution of charges, which provides much more accurate results in comparison
with their calculation from the potential. However, computation of this quantity requires a lot of
additional operations associated with necessary co-ordinate transformations and takes a
considerable amount of time. Theresultsarein Fig. 2.
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Fig. 4. Distribution of electric potential in plane A
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Fig. 5. Distribution of potential and electric field strength along abscissa MN

Special model. Let us consider a system of n charged 1D filaments (2 of general shape
(Fig. 6) carrying potentials ¢, i = 1,..., n. The filaments are placed in an isotropic medium of
relative permittivity &. The task isto find distribution of the electric field in such a system.

The thin conductors are first replaced by a set of point charges (conductor (2, by charges
Qi1,-.., Quk1, conductor % by charges Qo,..., Qu €etc. located along helicoidal curves surrounding
the filaments). While position of particular point charges can be to some extent arbitrary, their
values are determined from the condition that they produce the prescribed potential along the
original filaments. Let us further choose (Fig. 6) points Paj,..., P11 located on conductor €2, Pos,...,
P2 on conductor (2, etc. Even when these points may be selected relatively arbitrarily, we used
the perpendicular projections of corresponding points Qig,..., Qi to conductor 2, Qz1,..., Qe to
conductor (2, etc. For any point Py where me(Ln) and | e(1k,) of this set we can write
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discrete equation
1 Q& Qi

P, )=——.
#n(Fin) 4y i=1j=1‘

(4)

rQH - rpm

where ¢, denotes potential of the m-th conductor and expression in the absolute value in the
denominator the distance between the charge Q; and point Pn. The system of equations (4)
provides the values of charges Q; that are immediately used for consequent computations of the
field quantities all over the investigated area.

(2}

Fig. 6. The solved arrangement

Geometrical convergence of the algorithm was tested on a thin direct conductor of length
| =100 m carrying potential ¢ =1V (infinity is characterised by potential ¢ =0 V). Solution to the
system (4) provides distribution of the point electric charges along a conductor (see Fig. 7, a, b).
Fig. 8 depicts distribution of the radial component E; of the electric field strength. We can see that
near the conductor its distribution fails, but at a distance higher than 0.1 m from the conductor the
difference between the real and calculated distribution is almost negligible (which corresponds
with expectations). Parameters substantially affecting limits of the method are the number of
substituting point charges and radius of the selected helix. Computations were realized by a code
written in Borland Delphi.
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Fig. 7a. Distribution of the electric charge along the conductor
(for 800 point charges and more the results are practically equal)
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Fig. 7b. Radial component E; of the electric field strength versus distance from the conductor
in the plane perpendicular to the conductor in its centre

[lustrative example. The algorithm was used for mapping electric field near the crossing of
two three-phase lines of high voltage with potentials 110 kV and 10.5 kV, respectively.
Arrangement and dimensions are obvious from Figs. 8 and 9. The sequence of phases in both lines
is the same and there is no phase shift between them.
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Fig. 8. Arrangement and dimensions of particular conductors (front and side views)

Fig. 9. 3D view of the arrangement and influence of the earth

The length of the input conductors to the crossing was selected with respect to the
geometrical convergence. The convergence was evauated in terms of contribution of length of the
input conductor to the resultant distribution of the electric field strength. The arrangement contains
9000 charges. The influence of the earth with zero potentia in the plane xy was respected by
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means of mirroring of the main lines by lines with opposite potentials. The line with potential
110 kV is5 meters above the earth.

Fig. 10 shows distribution of electric field strength above lines with potential 110 kV for
timet = 0 sand plane yz (x = 0) m. There is practically no influence of the second 10.5 kV line.
The field is computed for the following parameters:

110 kV 10.5 kv
phase | A B C R S T
Ukv)| O 95.262 |-95.262 0 9.093 | -9.093

Distribution of electric field strength along axisx at timet =0 sisshownin Fig. 11.

Fig. 10. Distribution of electric field in planeyz, t = 0s
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Fig. 11: Distribution of electric field strength along axis x for timet=0s
(compared with alone line with potential 10.5 kV)

Conclusion. Both discussed methods can significantly help with mapping of large electric
fields where classic FD or FE-based techniques may fail. In the continuation of the work, however,
it 1S necessary to improve some parts of the presented algorithms. As for integra methods,
important is particularly selection of high-degree polynomials substituting the charge density in the
cells providing good approximation of its distribution especialy near the corners and edges of the
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charged bodies. The most serious aspect of the second method is the mathematical evaluation of
selection of positions of individual point charges Q; and checkpoints P;;. Optimization of their
selection would surely contribute not only to their decrease (leading to system matrix of lower
order) but also to higher accuracy of results.
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Hamionansnuit yHiBepcuret “JIbBiBCbKa MOJITEXHIKA"

HOIrJasA A IHZJKEHEPA-EJIEKTPUKA HA YUCJIOBI METO/IN
PO3B'SI3YBAHHS 3BUYAMHUX JTUGEPEHIIAJIbHUX PIBHSIHb

© Mopos B.1., 2003

Y crarTi PO3risiHyTi BJIACTHBOCTI YHCJIO0BUX METOAIB PO3B A3aHHS 3BHYANHUX
audepeHniaIbHUX PiBHAHB, 0 ONMCYIOTH MO/ eI eJIeKTPONPUBO/IB.

There were analysed properties of the numeric methods for solving the ordinary
differential equationsthat described the eectric drives control systems.

IMocTanoBKa mMpo0JeMu. 3aBISKN PO3BUTKY KOMIT IOTEpHOI TEXHIKU MepeBaykHa OUIBIIICT
TEXHIYHUX PIlIeHb 000B’I3KOBO MPOXOAUTH €Tal KOMII IOTEPHOTO MOJEIIOBAHHS ISl MIEPEBIPKU
ix mpaBwibHOCTI 4HM edekTuBHOCTI. OIHUM 3 BH3HAYAIBHUX €TaliB  KOMII IOTEPHOTO
MOJICJIFOBAHHSI € 3aCTOCYBaHHS YHCJIOBUX METOJMIB JUIsl 3HAXO/DKCHHS IIYKaHOTO pO3B’SI3KY.
30kpeMa, I pO3paxyHKy TUHAMIKH 3aCTOCOBYIOTHCSI YHCIIOBI METOM PO3B’ I3yBaHHS 3BUYAHIX
nudepeHIiaTbHUX PIBHAHD. Y CYKYIHOCTI 3 MATEMaTUYHOIO MOJEIUIIO 00’ €KTa BOHH YTBOPIOIOTH
KOMIT FOTE€PHY MOJIEITb, TIOBEIIHKA SIKO1 BU3HAYAETHCS AI€F0 000X KOMIIOHEHTIB.

TpanumiitHo cKiIamocs, IO OCOOJMMBOCTI YHUCIOBUX METOJIB PO3B’ SI3yBaHHS 3BUYAMHHUX
TuQEepeHIiaTbHUX PIBHSHbL HE BPAXOBYIOTHCS — BBAXKAETHCSA, IO BOHH MaJl0 BIUIMBAIOTH Ha
MOBEIIHKY PE3yJbTYI04Y0i KOMIT FOTEepHOI Mozemi. [{to ir03ir0 0cOOJMBO MiACHIIOIOTH CydYacHi
QITOPUTMU 3 aBTOMATHUYHMM BHOOPOM KpOKY IHTErpyBaHHs, HaIllpHUKIIaJ, 3acTOCOBaHI Yy
maremarnunomy makeri MATLAB i iioro momarky — makeri Simulink. He npumenimyroun
no3utuBHUX skocted SIMuUlink  (my:xe 3pyunumit 3aci®0 Ui Bi3yaJbHOrO  IMITAIifHOTO
MOJICTTIOBaHHS, 30KpeMa, CEKTPONPHUBOJIB), CIiJ BIA3HAYMTH, IIO 1€ CEPEIOBHUIINE CTBOPIOE
BpPa)XCHHS JIETKOTO PO3B’s3aHHS Oy/b-sKO1 3a/1ayi, SKy MOXHA IMOJATH CTPYKTYPHOIO CXEMOIO 3
enementiB  Simulink. Maibke [ecATOK MOCTYINHHMX peali3ailiii YHUCIOBHX METOMIB  JUIs
pO3B’s3yBaHHS U(EPEHIiAIbHUX PIBHAHb 3 aBTOMAaTHYHUM BHOOPOM KpOKY, IO HAasBHI B
Simulink, HiOK TIEpEeKOHYIOTh Y BCECHJIBHOCTI Cy4acHOI KOMITIOTEPHOT Hayku. Y TO# camuii 4ac
efidopis TpUBAE HEIOBrO — JOCHTH PO3MOYATH MOJCIIOBAHHS CHUCTEMH 3 IKOPCTKUMHU



