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REGIONAL QUASIGEOID DETERMINATION:
AN APPLICATION TO ARCTIC GRAVITY PROJECT

Purpose. Invegtigation to study quasigeoid computations based on the regiona gravimetric data and
different types of nonorthogonal basis functions was assessed to be important. When measurements from only
restricted regions of the Earth surface are available, global spherical harmonics loose their orthogonality in a
limited region, so the determination of the coefficients of the model, usualy by using the least squares method,
isnumerically unstable. In spite of thisfact, there is a specific solution for Laplace equation for the situation of a
spherica cap when the boundary conditions are appropriate. M ethods. Our solution uses the gravity anomalies
in the Arctic area taken from the Arctic Gravity Project (AGP). The method applied on this data set is adjusted
spherical harmonic analysis (ASHA). Computation of the quasigeoid heights was performed by the “Remove -
Restore” procedure in three steps. On the first step the free air gravity anomalies of the EGM 2008 model up to
degree/order 360 were substracted from theinitial gravity anomalies of the AGP to get rid of the low frequency
gravity field content. On the second step the approximation of the residual gravity anomalies was based on the
ASHA method. The construction of the normal equations matrix may lead to the time consuming procedure. For
this reason the discrete orthogonality property in longitude for the chosen basis system was taken into account
and led to the significant decrease of the computational time of theresidua coefficients g, ,l,. On thelast step
the residual quasigeoid heights (high frequency components of the gravity field) were computed via the residual
harmonic coefficients @, ,b,, and added to the global contribution of quasigeoid heights taken from the
EGM2008 model up to degree/order 360 (low frequency components of the gravity field). Results. Hence the
gravity field model was constructed and compared with AGP gravity anomalies. Also the obtained model of
quasigeoid heights was compared with quasigeoid heights from 49 GNSS/leveling points. Scientific novelty
and practical significance. In this paper the modification of ASHA method was developed, which makes it
possible to significantly accelerate the process of computing the unknown coefficients in the construction of
local gravitational fields. This allows to compute local gravitational fields of higher orders. It iswell known that
quasigeoid accuracy depends on the order of model.

Keywords. gravity anomalies, quasigeoid heights, adjusted spherica harmonic analysis, spherical cap
harmonic analysis.

tial and implemented using radial potential multipoles
(Marchenko, 1998; Marchenko et al., 2001), which
are connected with the radial basis functions. Another
type of model approach represents the so-caled

Introduction

The construction of high-precision quasigeoid
heights usually can be carried out using the model or

operational approaches of physical geodesy. The
operational approach corresponds to the method of
least-sguares collocation and requires a prior study of
additional information about the Earth gravitationa
field (Moritz, 1980; Sideris, 2005). Such approach
leads to the optimal linear estimates and allows to get
a stable solution. The disadvantage of this method is
the large order of the inverted matrix, which is equal
to the number of initial data (observations). In the
model approach an order of inverted matrix is much
smaller and equal to the number of parameters. In this
case different sets of basis functions are usually used,
which are preferred in local gravity field modeling
due to the large number of data to be processed. For
example, the sequential multipole analysis was
developed for the approximation of disturbing poten-
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spherical cap harmonic analysis (SCHA) that involves
the associated Legendre functions of the integer
degree and noninteger order (Haines, 1985). These
functions form two orthogonal subsets. In every set
corresponding functions are mutually orthogonal over
the spherica cap. However in genera these functions
are not orthogonal and it is quite difficult to compute
eigenvalues and norms for their high orders. For that
reason it is possible to use a special model approach
of the adjusted spherical harmonic analysis (ASHA)
(de Santis, 1992) for the approximation of the local
gravity field (Jiancheng et al., 1995; De Santis &
Torta, 1997). The ASHA technique provides the
projection of initial data from a segment of sphere to
hemisphere and leads to the spherica functions of
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integer degree and integer order. This paper focuses
on this alternative ASHA method to the gravity field
approximation (as the addition to the SCHA
approach) within the procedure of “Remove-Restore”.

The traditional gravimetric quasigeoid determination
is based on the gravity anomalies Ag, which are given
with respect to the quasigeoid (wich is unknown at this
stage and has to be determined using just this gravity
measurements). Nevertheless, the consideration of Ag

in Molodensky sense will lead to the quasigeoid heights
in the Arctic area within latitudes [65°,90°].

The National Imagery and Mapping Agency
(NGA) collects the Ag sets in the frame of the Arctic

gravity project (AGP) (NGA, 2008) in order to build a
high-precision quasigeoid heights in the Arctic area
including the construction of gravity anomalies grid
with resolution of (5' x 5") using data of airborne
gravimetry, satellite altimetry and gravimetric data
from nuclear submarines (SCICEX). Fig/ 1 illustrates
the gravity anomalies from the AGP within latitudes
[65°, 90°].

Fig. 1. Gravity anomalies from AGP Ag,,, [mGal]

Methods
Spherical cap harmonic analysis

As well known, the approximation of the
geopotential function V' and its functionals in some
part of sphere has a better results in the case of the
suitable base functions system. According to Sturm-
Liouville theorem (Churchill, 1963; de Santis &
Falcone, 1995) values m and »n are nonnegative
integers for the whole sphere. However, if some
function is defined on a segment of a sphere (fig. 2)
the boundary conditions depending on latitude are
(Haines, 1985):

de
P”k(m)m(cosgo) = OfOI"k —m=odd (2)

=0 fork —m=even (1)

where @, is the half-angle of segment (polar
distance), k£ is the index, which regulates real

(noninteger) n for some m (n, > k).

Fig. 2. Segment of sphere
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Indeed the system of functions (1) is orthogonal
with weight Jsin@ in the interval [0; 6,]. The
system (2) is orthogonal with the same weight as the
system (1) in the interval [0; 6,], but, in general,
functions (1) and (2) are not mutually orthogonal.

F(nk’mvl_cosgo):()s (4)
1—-cosd, 1—-cosg,

nk Tﬁ(nkam’To) -

For computation of the functions (1) and (2) it is _ 1—cosd ®)
appropriate to express them via a hypergeometric —(n, —m)F(n, +1,m,————2) =0,
series (Hobson, 1931)
P, (cos@)=sin" 0-F(m—n,,m+ where
+nk+1,m+l,1_cosa) * |- cosd
For computation the n, it is possible to expand Fn,m, )=F(m=n,, ©
the equations (1) and (2) as a following 1-cos®
hypergeometric series (Hwang & Chen, 1997): m+n +1lm+l, )-
Table 1
Values 7, for segment of sphere 6, =25
k/m 0 1 2 3 4 5 6 7
0 0.000
1 5.004 3.806
2 8.296 8.296 6.632
3 12.148 11.743 11.324 9.318
4 15.587 15.586 14.923 14.223 11.938
5 19.331 19.079 18.824 17.961 17.044 14.518
6 22.821 22.821 22.384 21.937 20.909 19.811 17.072
7 26.523 26.339 26.154 25.567 24.963 23.792 22.538 19.606

Fig. 3. Functions B, (cossé), P, (cossé), P,,(cossd) on segment of sphere 6, =90°

(solid lines) and B, ,(cos®), P, ,(cos), P, ,(cosd) on segment of sphere 6, =25°
(dashed lines), where 0 €[0;25°]
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For example, values n, for the segment of sphere

6, =25° are shown in table 1.

Adjusted spherical harmonic analysis

The computation of zeros of the functions (4), (5)
and their norms (Hwang & Chen, 1997) leads to time
consuming procedure. It is much easier and more
efficient to work with functions, wich can be
represented by a finite series.

Let us consider the transformation from the
coordinate system on the segment of the sphere
(r,0,1) to the new coordinate system on the

hemisphere (+',6',1") (de Santis,1992):
r'=r, A'=1,60'=s-0 (7)

where s = .
0

After the transformation (7) eigenvalues of these
functions become integer and nonnegative on the
hemisphere, and, therefore, these functions can be
expanded into a finite hypergeometric series. It should
be noted that functions on different segments of the
sphere are similar (fig. 3).

Sketch of computations

The procedure “Remove-Restore” (Hofmann-
Wellenhof & Moritz, 2005) is traditionally used for
computation of high-precision quasigeoid heights.

According to this procedure, let us separate the
quasigeoid height ¢ in the two parts:

C=00+¢y, (8)
where 64 and ¢, represent the contributions to
quasigeoid height corresponding to high frequency
and low frequency components of the gravity field
respectively. Generally a priori model up to
degree/order 360 is subtracted for constructing gravity
model within procedure “Remove-Restore”. In our
experiment, the contribution £,, was computed using
the global gravitational model EGM 2008 (Pavlis et
al., 2008) up to degree/order 360 (Fig. 4):

GM 30 a\' n —
é‘]\/l = W%(EJ mzzlo{cnm COS(mﬂ,) +

©)
+8,, sin(mA)}P,,(cos )

GM 3¢
Ag, = R’

ZO > (n- 1){@,,, cos(mA) +

n=2m=0 (10)
+85,,sin(mA)}F,,(cos )

nm

The Ag were computed from the EGM 2008

model up to degree/order 360 (Fig. 5):
After operation “Remove” the residual values of
gravity anomalies were obtained (Fig. 6):
(11)

OAg =Ag o —AZy,

Fig. 4. Contribution of quasigeoid heights [m], corresponding to
the long-wave features (up to degree/order 360) of the EGM 2008 gravitational field
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Fig. 5. Gravity anomalies [mGal], computed from model EGM 2008
up to degree/order 360

Fig. 6. Residual values of gravity anomalies dAg [mGal]
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Results
The construction of the regional gravitational
field model by the modified ASHA approach
Because in the ASHA method we came to integer
eigenvalues the approximation of the residual values
of gravity anomalies will be based on the ASHA
approach in the following form

z S (n- 1){a,, cos(mi)+

n=2m=0

5Agmod
(12)
+ 17km sin(m)}P,, (coss0)

* . .
where K is maximum order of model, s = 3.6,

a,,.b,, are fully normalized ASHA coefficients of

model.
To determine the optimal order K let us
consider resolutions of different models. As well

known, resolution of global model (Seeber, 2003) is
2zr A% 180
A=—— N (13)

or = .
K, 2 K,
In turn, resolution of the model, constructed using
ASHA, according to (de Santis, 1992) is
40,r A° 26}?
or —=—>-.
Km 2 K, (14)

Combining equations (13) and (14) for 6, =25
we get (Dzhuman, 2014)

l_

(15)

Thus, the model (10) is equivalent to model
ASHA up to degree/order 100. Evidently it is neces-
sary to construct the ASHA model with degree/order
more than 100 for representing the residual gravity
anomalies. For construction of high-precision

quasigeoid heights it is enough to adopt K:, =150.
We decided to use the least squares method for
computation of the unknown coefficients @,,,b,,. If

K, is

large it is inconvenient to inverse the

corresponding normal equations matrix. Therefore, it is
necessary to locate the initial data on the regular grid.
Then we will be able to use the discrete orthogonality
relationships in longitude. The distance between parallels
in this grid can be arbitrary, and the distance between
meridians must be constant. In this case we get
(Marchenko & Dzhuman, 2014; Sneeuw, 1994)

> i sinml/ =

i=1 j=1

cos mﬂ’

M-~
™M

0, m#0;

i=1 j=1

sinm A/ -sinm, A/ =

M-
0= 1M4=

0, m, #m,;

(16)

o

I
~.
]

> cosm A/ -cosm, A =0, m, #m,;

M\.
MP

smm]/l -cosm, 4] =0,
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where r is number of points in the first octant (0;5 ).

We gridded residual gravity anomalies 0Ag on such

grid using the cubic spline interpolation.
Let us introduce the abbreviations

R (3.,4)=P, (cosd, )cosm/lf}

nm

S, (9,4))=P, (cosd )sinmi/

nm

(17)
and
s r 4
2=222
k=li=1 j=1
where s is a number of parallels.
In such case according to (Marchenko &

Dzhuman, 2014) the unknown coefficients can be
easily computed by the formula

Km - —

I_:zmzRiijm'xo':qo" j:m’Km’ mZO,Km

o (19)
_;ZSimSjm~x5:q5, j=mK, ;m=1K,

where o =0(i,m), 6 =6(i,m), x, and x; are the

(18)

unknown coefficients, g and g5 are components of

residual vector.

Evidently, for such a grid the maximum order of
matrix, which should be inverted, coincides with the
maximum order of the constructed model taking into
account equations (16).

Thus, we got unknown coefficients @, ,b, up to
degree/order 150. The model of residual values of
gravity anomalies is shown in Fig. 7.

The main characteristics of gravity anomalies are
given in table 2.

Table 2
The main characteristics of gravity anomalies
Min., Max., Mean, St. dev.,
mGal mGal mGal mGal
AZ e 1675 | 2227 3.50 27.32
(Ag ) + 0848 00) -154.3 198.4 3.10 26.62

The relationship between gravity anomalies and
disturbing potential can be presented as a solution of
Molodensky's boundary-value problem (Hofmann-
Wellenhof & Moritz, 2005; de Santis & Torta, 1997):

1

or 7,
o %

where 7 is the spherical coordinate, O is the point on the

telluroid obtained from the corresponding point of the

physical surface of the Earth. The residual quasigeoid

undulation 64 is found by means of the Bruns formula

o = Z (21)
e
Thus, taking into account (20) and (21), we get
the contribution of the residual quasigeoid heights
(Fig. 8) by means of the formula
8 =22 z 3 (n— 1){a, cos(m) +

n=2m=0

Ag=-

(22)
+b, sm(mﬂ)}P (coss®)

nm
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Fig. 7. Model of residual gravity anomalies based
on the modified ASHA method up to degree/order 150 [mGal]

Fig. 8. Contribution of quasigeoid heights 6 [m]
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Fig. 9. Map of quasigeoid heights [m] in the Arctic area

Fig. 10. Placement of points with determined quasigeoid heightsDifferences d
between the model and measured quasigeoid heights are shown in table 4

14
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Table 4
Differences d between the model and measured quasigeoid heights

B,° L,° d, [m] B,° L,° d, [m] B,° L,° d, [m]
68,302 226,489 0,153 67,663 226,151 -0,015 65,193 236,566 0,104
67,437 226,228 0,109 67,908 226,425 0,124 68,250 225,204 0,071
67,457 226,246 0,188 68,192 226,563 0,123 65,361 221,700 0,113
67,098 223,874 -0,108 68,562 226,024 0,037 67,7192 226,222 0,116
67,245 224,793 -0,156 68,690 225,864 0,076 68,037 226,512 0,137
67,429 225,134 0,059 68,754 225,651 0,084 68,898 225,470 0,116
67,416 225,126 0,070 69,061 225,408 0,095 68,373 225,902 0,094
65,068 221,751 -0,103 69,226 225,757 0,138 68,306 226,473 0,149
65,772 222,154 -0,063 69,437 226,986 0,257 69,438 227,006 0,261
65,899 222,470 -0,002 69,437 227,011 0,291 68,203 224,885 0,025
66,261 223,191 -0,063 68,217 224,998 -0,041 68,292 225,570 0,194
66,449 223,367 -0,021 68,148 224,564 0,059 82,491 297,676 -0,551
66,565 223,692 -0,264 65,275 233,214 0,260 74,691 265,106 -0,463
69,288 226,096 0,119 65,281 233,157 0,248 67,818 244,868 -0,439
65,193 236,575 0,097 66,253 231,356 0,265 69,377 278,190 -0,439
67,543 226,212 0,111 66,257 231,370 0,312 70,736 242,239 -0,393
82,494 297,660 -0,561

Map of the full quasigeoid surface (8) is shown in
the Fig. 9.

The main characteristics of quasigeoid heights
are given in table 3.

Table 3
The main characteristics
of quasigeoid heights fields
Min., m Max., m Mean, m St. dev., m
é:M -40.5 68.1 10.8 17.85
¢ -41.0 68.2 10.9 17.89

Scientific novelty and practical significance

We used 49 points with determined quasigeoid
heights using GNSS-leveling to compare our model.
GNSS/leveling points with known quasigeoid heights
were obtained from International Center for Global
Gravity Field Models <http://icgem.gfz-potsdam.de/>
(ICGEM). Placement of these points is shown
in Fig. 10.

We can see from the table 4, that standard
deviation of differences between the model and
measured quasigeoid heights is equal to 0.22 m.

Conclusions

Finally we can conclude:

e The approximation of the regional gravity
field in the frame of the Arctic Gravity Project was
considered and based on the nonorthogonal functions
of the SCHA and ASHA methods;

e Among these approaches we prefer the ASHA
method that has a certaine advantage caused by the
possibility of the representation of the basis functions
in the form of a finite hypergeometric series in
contrast to the SCHA technique. It is evident that
ASHA technique gives the opportunity of the
construction of ASHA-model in the analytical or/and
gridded forms. The combination of different
approaches for the determination of optimal
degree/order of model is also discussed;

e The modified ASHA technique provides a
good accordance in terms of standart deviation
between initial and model gravity anomalies (table 1
and table 2);

e ASHA approach allows to avoid the time
consuming procedure in the computations of geodetic
functionals;

e The approximation by ASHA technique can
be reccomended especially for fast computations of
regional gravimetric fields with high orders.
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Hartionansumii yHiBepeuter “JIbBiBChKa MOJITEXHIKA”, IHCTUTYT Teomesii, Byl Kapnincekoro 6, JIseiB, YxpaiHa, 79013,
eJt. momra: teojuman@gmail.com

BU3HAUYEHHS PETTOHAJILHOTI'O KBA3ITEOIIA
3 APKTUUYHOI'O TPABITALIIMHOI'O IIPOEKTY

Merta. B po6oTi noSy0BaHo 1mosie BECOT KBazireoina Ha Teputopito periony Apkruku. Konu B HaSBHOCTI €
JlaHi 3 MMEBHOro perioHy 3emui, rnodansHi cdeprusi dyHKIIT BTPadaloTh CBOK OPTOrOHAIBHICT HA JTAHOMY
perioHi, 1 Bu3HadeHHs Koe(illieHTIB MOJeN, sKe 3a3BM4ail [IPOBOAMTECS 3a CIIOCOO0M HalMEHINMX KBaapaTis,
cTae uHcesNbHO HecTabimpHUM. [IpoTe € cremianmbHe pilmeHHs piBHSAHHA Jlammaca ams cepHIHOTO CETMEHTY.
Meton. B stkocTi BUXIHMX JaHUX IPUHHATO IIoJIe aHOMANil CHJIM BarW Ha JIaHWH perioH 3 ApPKTHIHOTO
npoekTy. [loOynoBa kBazireoina 3/ilfcHioBamacs 3a TomoMoroto npouenypu “Buganenns - BinHoBnenus” B Tpu
etan. Ha mepuroMy eTami Bifl Moy aHOMaJiil CHNMM Bard 3 ApPKTHYHOTO IPOSKTY BiMHIMAITHCS MOJENbHI
3Ha4YeHHsS aHOMaTii cinmu Barw, obumcrieri 3a Moaemto EGM2008 no 360-ro mopsaky. Ha npyromy etami
BHUKOHYBAJIOCS MOJEIIOBAHHS OTPHMAaHUX 3aTHIIKIB aHOMATid CHJIM Bard 3a JomoMoron Metoxy adjusted
spherical harmonic analysis (ASHA). danuit Mmeton mepeadavae peayKIil0 BUXIAHWX JAaHWX Ha TRChepy i X
MOJIETIOBAHHS 3a JOMOMOTO CHCTEMM HEOPTOTOHATBHUX (YHKIIH, SKi 3aMOBIMTBHSIOTE piBHsAHHIO Jlammaca.
Ipu npoMy mmia 4ac moOYAOBM MATPHINl HOPMAJIBHUX PIBHSIHE OyJ0 BUKOPUCTAHO MTUCKPETHY OPTOTOHAIBHICTH
6a30B01 cuctemu (DyHKINHM MO JAOBrOTI, IO IMPHU3BEIO A0 3HAYHOTO CKOPOYECHHS Hacy OOYMCICHB HEBIIOMEX
koedinientis. Ha TpersoMy eramni, BUKOPUCTOBYIOUM IONEPEAHBO 3HalieHl koedimientu wmoxeni, Oyio
1oOyI0BAaHO 3aJTUIIKA BHCOT KBazireoiza (KOPOTKOXBHIIBOBI e(eKTH IOMs), TakoX II00y/OBaHO BHECOK
kBazireoina i3 mMomemi EGM2008 (moBTOXBHITBOBI eeKTH MONs), i BIHOBIEHO IMOBHE TIOJE KBasireoina.
PesyabTarn. [ToGynoBano MoeNs perioHATBHOTO TPaBITAIIMHOTO ITOJS | MOPIBHAHO il 3 aHOMATISIMH CHITH
TsokiHHSA 3 AGP. Takox oTprMaHO MOJelTs BUCOT KBazireoina, AKy MOPIBHSHO 3 BHCOTAMH KBa3ireoina, B3sSTHMHA
3 49 touox GNSS/miBemopanns. HaykoBa HOBH3HA | mpaKTH4HA 3HAYYIIiCcTh. B maHiil poboTi po3pobieHo
Monudikartiro Metonry ASHA, sika mae MOAKITHBICTE 3HAYHO TPUIIBUIIATA MPOIEC 3HAXOKECHHS HEBITOMHUX
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KoedinieHTiB Npy N0OYIOBI JOKANBHMX TpaBitauiiHux nousis. lle gae MokuBiCTH OymyBaTH JIOKaNbHI
rpasitamiifti nosst BUIIMX NOpsyIKiB. JoOpe BiZIoMO, 110 TOYHICTh KBa3ireoina 3a1eXuTh Bi/l [IOPs/IKY MOJIEN.

Knwuoei cmoBa: anoMarii CHTH TSXKIHHS, BACOTH KBasireoinma, adjusted spherical harmonic analysis,
spherical cap harmonic analysis

A.H. MAPUYEHKO, b. 5. JCKYMAH

Hammonaneueiit yaupepcuter “JIEBOBCKAS TMONUTEXHHUKA”, WHCTUTYT reoge3wu, yi. Kapmunckoro 6, Ykpanna, 79013, am.
moyTa: teojuman@gmail.com

OITPEJEJIEHUE PETTOHAJIBHOI' O KBASUTEOUJA
N3 APKTUYECKOI O TPABHTATTMOHHOI'O TTPOEKTA

Heas. B pabote rmocTpoeHo noe BBICOT KBa3UI'eoH/la Ha TEPPUTOPHIO perroHa ApkTiky. Korza B HaTW4IUA
JaHHBIE W3 OIpe/ielleHHOTO perHoHa 3eMnH, TiodanbHble cdepudeckie (yHKINH TepsiOT  CBOIO
OPTOTOHATFHOCTh Ha JaHHOM PETHOHE, U OlIpeieiieHie KO3 QUITHEHTOB MOJIETH, KOTOPOE OOBITHO ITPOBOANTCS
o crmoco0y HAaWMEHBIINX KBAJPATOB, CTAHOBUTCS HHCIECHHO HeCcTaOMIBHBIM. OJHAKO €CTh CIEIHaITbHOE
penrenne ypasHeHus Jlammaca ams cdepudeckoro cermenta. Meroa. B kadecTBe HCXONHBIX NTAHHBIX MIPHHATO
IIoNle AHOMAJIMK CHJTHL TSDKECTHM HA JIAHHEI pernoH ¢ Apkrudeckoro mpoekrta. IlocTpoenme Kpazureouaa
OCYIIECTBJIIACH C TIOMOINBIO Iponenypsl “ Yaanenue — BoccTtaHoBnenre” B Tpu dTama. Ha mepBoM drtame OT
TOJISL AHOMAJTUN CHITHI TSIKECTH C ApKTI/ILIeCKOFO MIPOCKTa OTHUMATUCH MOOCIBHBIC 3HAYCHUA AHOMAJTHH CHJTBI
TSOKECTH, BBMHUCIeHHBle o Moxemu EGM2008 no 360-ro mopsaxka. Ha BTOpoM »JTame BBIIOJHAIOCH
MO/JIETHPOBaHAE IONMYYeHHBIX OCTATKOB aHOMATTHK CHITBI TsDKECTH ¢ IoMolbio Metozna adjusted spherical
harmonic analysis (ASHA). [lanusiii MeTon IpetycMaTprUBaeT PeLyKIIMI0 HCXOMHBIX JaHHBIX Ha Horycdepy H
WX MOJIETTHPOBAHHE C ITOMOIIBIO CHCTEMBI HEOPTOTOHATBHBIX (WYHKIIMH, KOTOpBIE Y/IOBIETBOPSIOT YpaBHEHHIO
Jlarumaca. Ilpy aTOM IpH ITOCTPOSHUHM MaTPHIEI HOPMATBHBIX ypaBHEHHN OBLTO HCIIONB30BAHO AMCKPETHYIO
OpPTOTOHATBHOCTh ©a30BOH CHCTEMBI (YHKIIMM 110 JIONTOTE, YTO IIPUBENO K 3HAYUTCIFHOMY COKPAIICHHIO
BpEMEHHY BEIMHUCITCHHN HEU3BECTHBIX KoaddurmenTos. Ha TpeTbeM aTane, HCHONE3Ys IPEABAPUTEITEHO HAHICHE
k03¢ puIIMEeHTH MOIETH, OBUTO MOCTPOEHO OCTATKHM BBICOT KBAa3WUTEOHIA (KOPOTKOBONHOBEIE 3()(EKTHI MOIS),
TaKke TIOCTPOEHO BRkian keasureomma ¢ wmozxemn EGM2008 (mmnHAOROTHOBEIE 3ddexTh Tomns), o
BOCCTAHOBIIEHO IOJTHOE HoJTe KBasureonia. PesyabraTel. IlocTpoeHa MO/ieNb PErHOHATBHOTO MPABUTAIIMOHHOTO
IoJigs U CPpaBHCHUE €€ C aHOMAJTUAMHU CHJIBI TAXKCCTU C AGP. Taxxke TI0JTy4d€Ha MOJICJIB BBICOT KBas3urcowujaa,
KOTOPYIO 10 CPABHEHWI) ¢ BBICOTAMH KBazureomaa, B3aTeiMu 3 49 touek GNSS / muenuposanus. Hayunas
HOBH3HAa W MNpaKTHYecKasi 3HAYUMOCTh. B nauHoil pabore paspaborana moaudukanus meroma ASHA,
KOTOpas IT03BOJISIET 3HAUUTEITBHO YCKOPHUTH IPOliece HaXOXKACHUS HEM3BECTHRIX KO3(QHUIIEHTOB IIpH MOCTPO-
€HHH JIOKATBHBIX TPaBUTAIIMOHHBIX ITOJNIeH. ITO JlaeT BO3MOXKHOCTH CTPOHTH JIOKATbHbIE TPABUTAIIHOHHBIE OIS
BBICIIHX MOPSIKOB. XOPOIIO U3BECTHO, UTO TOYHOCTH KBA3UTEOM/Ia 3aBUCHUT OT ITOPSI/IKA MOJIEIH.

KnroueBbie c1oBa: aHOMalTHU CHITHI TSDKECTH, BBICOTHI KBasureonsna, adjusted spherical harmonic analysis,
spherical cap harmonic analysis
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