плазменных источников ионов. – М., 1972. 6. Розбери Ф. Справочник по вакуумной технике и технологии. – М., 1972.

УДК 621.793.162: 539.216.2

С.І. Ющук¹, С.О. Юр'єв¹, В.Й. Ніколайчук², Б.Р. Ціж^{3,4}, П.С. Костюк ¹Національний університет "Львівська політехніка" ²Національний університет водного господарства і природокористування ³Львівська національна академія ветеринарної медицини ім. С.З. Гжицького ⁴Університет Казимира Великого в Бидгощі (Польща)

ХІМІЧНЕ ТРАВЛЕННЯ ФЕРОГРАНАТОВИХ ПЛІВОК

© Ющук С.І., Юр'єв С.О., Ніколайчук В.Й., Ціж Б.Р., Костюк П.С., 2006

S.I. Yushchuk, S.O. Yuryev, V.Jo. Nikolaichuk, B.R. Tsizh, P.S. Kostyuk CHEMICAL CORROSION OF FERROGARNET FILMS

© Yushchuk S.I., Yuryev SO., Nikolaichuk V. Jo, Tsizh B.R., Kostyuk P.S.,

Досліджено процеси хімічного травлення ферогранатових епітаксійних плівок $Y_3Fe_5O_{12}$ і $(Y, Sm, Lu, Ca)_3(Fe, Ge)_5O_{12}$ в ортофосфорній кислоті в температурному інтервалі 60–175 ^{*0*}*C*. Розроблено методи формування захисних покрить і масок під час травлення з силіконового клею ПМС–200 і фоторезисту ФП–383. Показано, що на поверхні феритової епітаксійної структури за допомогою хімічного травлення можна формувати ферогранатові елементи круглої форми діаметром 0,5–3 *мм* з вузькими лініями феромагнітного резонансу.

Processes of chemical corrosion of $Y_3Fe_5O_{12}$ and $(Y, Sm, Lu, Ca)_3(Fe, Ge)_5O_{12}$ ferrogarnet films on orthophosphor acid at 60...175 ^{*b*}C temperature interval have been investigated. The methods of formation of protective layers and masks at corrosion from silicones IIMC–200 glue and $\Phi\Pi$ –383 photoresist have been worked out. The possibility to form 0,5...3 *mm* diameter ferrogarnet elements of circle shape with narrow lines of ferromagnetic resonance by chemical corrosion have been demonstrated.

Вступ

Епітаксійні ферогранатові плівки є перспективним матеріалом, альтернативним до монокристалів ферогранатів, для використання в надвисокочастотній (НВЧ) електроніці. Плівки вирощують методом рідкофазної епітаксії з розчинів–розплавів феритоутворюючих оксидів на підкладках з монокристалів галій–гадолінієвого гранату (ГГГ). Не вдаючись в особливості технології ферогранатових епітаксійних структур (ФЕС), відзначимо, що після отримання ФЕС виникає необхідність їх подальшої хімічної і механічної обробки для усунення залишків флюсу, виготовлення зразків для магнітних вимірювань і дослідження феромагнітного резонансу (ФМР) [1], вивчення стану поверхні і виявлення структурних дефектів [2, 3], виготовлення надвисокочастотних резонаторів і елементів мікрохвильових схем [4].

Під час виготовлення резонатора для дослідження спектрів спінових хвиль або вимірювання параметрів ФМР (ширини лінії, намагніченості насичення) за допомогою ультразвукового або механічного різання [5] виникає дефектність по його периметру, яка спричиняє появу багатьох мод в НВЧ-спектрі з ненульовими хвильовими векторами у вузькому діапазоні частот. Ці моди поглинають енергію НВЧ-поля. У той же час під час використання хімічного травлення відсутність дефектів на краях резонатора дає змогу спостерігати на ньому однорідний феромагнітний резонанс [1]. У цій роботі ми досліджували процеси хімічного травлення епітаксійних плівок залізо-ітрієвого $Y_3Fe_5O_{12}$ (ЗІГ) і ЗІГ-заміщеного (Y, Sm, Lu, Ca)₃(Fe, Ge)₅ O_{12} гранатів, нанесення локальних захисних покрить на поверхню ФЕС і формування на ній ферогранатових елементів діаметром 0,5–3 *мм*.

Вирощування ферогранатових плівок і вимірювання їх параметрів

Плівки вирощували за допомогою ізотермічного занурення монокристалічних підкладок з ГГГ орієнтації (111) в перенасичений розчин–розплав феритової шихти з використанням флюса $PbOB_2O_3$. Підкладки вирізували з монокристала ГГГ, вирощеного методом Чохральського, з подальшим їх шліфуванням і поліруванням до 14 класу чистоти. Товщина підкладок становила 0,5 *мм*. Для епітаксійного вирощування використовували автоматизовану установку, в якій технологічними операціями керував комп'ютер. Точність підтримування температури в зонах печі становила $\pm 0,1$ ^{*o*}*C*. Товщина вирощених плівок не перевищувала 5 *мкм*. Дослідження структури і складу епітаксійних плівок виконували за допомогою електронного мікроскопа з рентгенівським мікроаналізатором "Comebax".

Вимірювання ширини лінії ФМР виконували методом закороченого хвилевода на частоті 9,2 *ГГц* на зразках-резонаторах круглої форми діаметром 1 *мм*. Для вимірювання товщини ферогранатових плівок використовували оптичний інтерференційний метод. Інтерференційна картина утворюється під час вимірювання спектрів пропускання у разі падіння світлового променя на зразок у напрямі, близькому до нормалі. У роботі спектри пропускання ФЕС отримували за допомогою спектрофотометрів Specord M–40 і Specord 75IR. Причому для плівок товщиною ≤ 4 мкм – в середній ІЧ областях на спектрофотометрі Specord 75IR. Похибка вимірювань товщинию > 4 *мкм* – в середній ІЧ області на спектрофотометрі Specord 75IR. Похибка вимірювань товщини не перевищувала 2 %.

Експеримент та його результати

Травлення ферогранатових плівок проводили в 85 % розчині ортофосфорної кислоти в інтервалі температур 60–175 ${}^{0}C$. Під час травлення при температурах $\geq 125^{0}C$ вимірювання товщини ферогранатового шару виконували через кожні 3–5 *хв.*, а при нижчих температурах травника – через кожні 15–20 *хв*.

На рис. 1 і 2 відповідно для ЗІГ і ЗІГ-заміщених плівок показані залежності їх товщини від часу травлення при різних температурах. У температурному інтервалі 125–165 ${}^{o}C$ швидкості травлення для ЗІГ-плівок становили 0,052–0,296 *мкм/хв.*, для ЗІГ-заміщених –0,063–0,470 *мкм/хв.* За температур, нижчих від 125 ${}^{o}C$ швидкості травлення малі і виконувати при цих температурах травлення є недоцільним.

Рис. 1. Залежність товщини плівок $Y_3Fe_5O_{12}$ від тривалості травлення при різних температурах: 1- 80 °C; 2-100°C; 3-115 °C; 4-125 °C; 5-135 °C; 6-145 °C; 7-155°C; 8-165 °C

Потім досліджували різні захисні покриття, які могли б слугувати маскою під час травлення ферогранатових плівок у гарячій ортофосфорній кислоті. До захисного покриття висували такі

вимоги: а) наявність малої швидкості травлення порівняно з ферогранатовою плівкою; б) хороша адгезія до поверхні плівки; в) достатня в'язкість, яка дає змогу формувати маскуюче покриття; г) мала пористість захисного шару; д) простота і доступність видалення з поверхні ФЕС.

Рис. 2. Залежність товщини плівок (Y, Sm, Lu, Ca)₃ (Fe, Ge)₅O₁₂ від тривалості травлення при різних температурах: 1 – 105⁰C; 2 –115[°]C; 3 –125[°]C; 4 – 135[°]C; 5 – 145[°]C; 6–155[°]C; 7–165[°]C

Під час виготовлення плівкових феритових елементів для надвисокочастотної електроніки використовується стандартний метод [7], що полягає в нанесенні на феритову плівку діелектричного шару SiO₂ товщиною 0,5 мкм і формуванні в ньому за допомогою фотолітографії рисунка певної конфігурації, утворенні вікон в діелектричному шарі і витравлюванні незахищених ділянок фериту гарячою ортофосфорною кислотою. Цей метод є доволі трудомістким і вимагає дорогого обладнання. Крім того стає можливим проникнення атомів кремнію в поверхневі шари феритової плівки, що призводить до зростання втрат під час поширення поверхневих магнітостатичних хвиль і збільшення ширини лінії Φ MP.

Досліджували можливість виключення операції нанесення діелектричного шару SiO_2 на поверхню ФЕС і використання як масок під час травлення ферогранатових плівок силіконового клею ПМС–200 [1] і фоторезисту ФП–383.

1. Використання як захисне покриття силіконового клею

Щоб забезпечити високу адгезію і усунути забруднення, перед нанесенням клею поверхню ФЕС промивали в 50 % розчині оцтової кислоти, 20 % розчині азотної кислоти, дистильованій воді, ацетоні і сушили у струмені стиснутого повітря. Силіконовий клей наносили за допомогою медичного щприца з внутрішнім діаметром голки 0,5 *мм*. Сушили нанесений клей при t=20 ^{*o*}C (60 *xв*.). Потім ФЕС поміщали в сушильну шафу, температуру в якій збільшували до 180 ^{*o*}C, витримуючи при ній 30 *хв*. Виготовлена так клейова маска має хороші адгезійні та механічні властивості і володіє кислотостійкістю. Після термостатування ФЕС занурювали в попередньо нагріту до 145 ^{*o*}C ортофосфорну кислоту. Не покрита захисним шаром плівка $Y_3Fe_5O_{12}$ товщиною 3,5–4,5 *мкм* повністю стравлювалась за 25–35 *хв*., а плівка (*Y*, *Sm*, *Lu*, *Ca*)₃(*Fe*, *Ge*)₅ O_{12} – за 20–30 *хв*.

2. Фоторезист як захисне покриття

Товщину шару фоторезисту вибирали за можливістю найменшою для підвищення роздільної здатності шару, але достатньою для забезпечення малої дефектності і потрібної стійкості до травника. На очищену поверхню ФЕС фоторезист наносили центрифугуванням при частоті обертання 2500 *об/хв* протягом 0,5 *хв*. Отримана товщина шару фоторезисту становила 0,8–0,85 *мм*. Нанесений шар сушили при t=20 ^{*o*}C (10 *хв*.) і в сушильній шафі при t=100 ^{*o*}C (25 *хв*.). Експонування і проявлення виконували за загальноприйнятою технологією.

Сушіння проявленого шару виконували при t=20 ^{*o*}*C* (15 *xв.*), потім ФЕС поміщали в сушильну шафу при t=120 ^{*o*}*C* на 20–30 *хв.* з подальшим підвищенням температури до t=150 ^{*o*}*C* і термостатували 3–5 *хв.* При таких температурних режимах повністю видаляється проявник, підвищується хімічна стійкість і адгезія шару фоторезисту до ферогранатової плівки, а також відбувається руйнування діазогруп і зшивання полімерного складника фоторезисту. Стравлювання незахищених фоторезистом ділянок ферогранатової плівки проводили в ортофосфорній кислоті при t=155 ^{*o*}*C.* При підвищенні температури понад $155^{$ *o* $}C$, або при її пониженні нижче $145^{$ *o* $}C$, тобто під час зростання тривалості травлення, відбувається розтравлювання рельєфу, збільшення рельєфу вікон і відшаровування фоторезисту. Отже, температура травлення є важливим технологічним параметром під час виготовлення ферогранатових елементів і багато в чому визначає їх фізичні властивості. Після закінчення травлення ФЕС промивали в деіонізованій воді. Потім за допомогою дротяної алмазної пили підкладку ФЕС розрізали на шматки, на яких знаходились ферогранатові елементи.

Результатом проведених досліджень стала можливість виготовляти елементи круглої форми діаметром 0,5–3 *мм* з феритовим покриттям товщиною до 5 *мкм*. Клиноподібність рельєфу периметра ферогранатового елемента є незначною. Для порівняння різних методів виготовлення ферогранатових елементів, які характеризуються різними режимами травлення, в таблиці наведені результати вимірювань ширини лінії ФМР для цих зразків.

Спосіб	Технологічні параметри		Ширина лінії ФМР, Е			
виготовлення	Температура	Швидкість	Товщина ферогранатової плівки, мкм			
	травлення, ⁰ С	травлення, мкм/хв.	2,5	3,5	5,0	
Різання						
ультразвуком [5]	-	-	1,67	1,23	1,05	
Хім. травлення з клейовою маскою	125	0,052	0,63	0,60	0,62	
	145	0,124	0,55	0,50	0,45	
	155	0,219	0,55	0,55	0,50	
	175	0,375	0,75	0,71	0,69	
Хім. травлення з маскою з SiO ₂	140	0,120	0,50	0,48	0,51	
	160	0,260	0,63	0,55	0,80	
Хім. травлення з маскою з фоторезисту ФП–383	125	0,052	0,45	0,50	0,61	
	145	0,124	0,40	0,45	0,45	
	155	0,219	0,37	0,40	0,34	
	175	0,375	0,43	0,50	0,50	

Ширини лінії ФМР ферогранатових елементів з плівкою	$Y_{3}Fe_{5}O_{12}$
круглої форми діаметром 1 <i>мм</i>	

На рис. З показані спектри ФМР зразків-ферогранатових елементів, виготовлених різними методами. Видно, що спектр зразка, отриманого хімічним травленням з маскою з фоторезисту ФП–383, володіє найвужчою лінією ФМР.

Висновки

1. У температурному інтервалі 125–165 ${}^{0}C$ швидкості травлення в ортофосфорній кислоті для плівок $Y_{3}Fe_{5}O_{12}$ становлять 0,052–0,296 *мкм/хв*, а для плівок $(Y, Sm, Lu, Ca)_{3}(Fe, Ge)_{5}O_{12}$ –0,063–0,470 *мкм/хв*.

2. Оптимальними температурами травлення ферогранатових епітаксійних плівок товщиною до 5 *мкм* ϵ 145–155 ^{*о*}*C*, оскільки виготовлені за цих умов резонатори володіють найменшими ширинами лінії ФМР.

3. Застосування як захисних покрить-масок під час хімічного травлення силіконового клею ПМС-200 і фоторезисту ФП-383 є простішою і дешевшою альтернативою до діелектрика SiO₂ без пониження якості ферогранатових елементів.

1. Ющук С.И., Костюк П.С. Особенности исследования ферромагнитного резонанса в ферритовых эпитаксиальных структурах // Приб. и техника экспер. – №6. – с.91–93. (1966). 2. Костюк П.С., Кузьмик А.С., Матковский А.О., Ворошило Г.И., Шевчук П.И., Сыворотка И.М. Дефекты в эпитаксиальных пленках ЖИГ // Физическая электроника. – Львов. В.35. – C.100–105 (1987). 3. Ющук С.И., Костюк П.С., Лобойко В.И. Влияние подложек на ширину линии ферромагнитного резонанса эпитаксиальных пленок железо-иттриевого граната // Неорганические материалы, 38(2). – С.233–235 (2002). 4. Ющук С.И., Юрьев С.А., Костюк П.С., Бондар В.И. Применение феррогранатовых эпитаксиальных структур в сверхвысокочастотной электронике // Технология и конструирование в электронной аппаратуре, 3(57). – С.22–25 (2005). 5. Ющук С.И., Костюк П.С., Юрьев С.А., Лотоикий О.Д. Получение пленочных резонаторов на основе эпитаксиальных структур железо-иттриевого граната // Физическая электроника. -Львов. В.34. – С.,97–102 (1987). 6. Ющук С.И. Монокристаллические феррогранатовые пленки для микроволновой электроники // Технология и конструирование в электронной аппаратуре, №1. – С.35–38 (1998). 7. Вапнэ Г.М. СВЧ-устройства на магнитостатических волнах // Обзоры по электронной технике, сер.1, Электроника СВЧ, 8(1060), 1-79 (1984).