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This work is devoted to the method of determining the effective thermal parameters of heating
sources in a smart home, which involves a combination of algorithms for data analysis and the equation
of the physical process of heat transfer. The use of such parameters allows one to create software and
hardware solutions for modeling the thermal map of the house, as well as to analyze energy consumption
using the machine learning models. Since, for the most part, the total consumption of heating energy is
known, it is of interest to determine the part of the energy that corresponds to the individual heating
sources. To this end, the article proposes a mathematical model and algorithm for estimating the
effective thermal characteristics of heating sources based on the heat transfer equation and data analysis
approaches that can be used to obtain information about individual heating sources. The task of
determining such parameters is reduced to two stages. At the first stage, using the finite-difference
approach to the heat transfer equation, the effective thermal parameter of the heating sources is
determined. Further, according to the data of energy consumption and distributions of room
temperatures and temperatures on the surface of heating elements, by applying data analysis methods,
an algorithm for estimating individual effective thermal characteristics of heating elements installed in
rooms is proposed.
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Introduction

A smart home as a significant part of smart grid systems is recognized as being widely developed by
many companies and government energy institutions. The fact that it has received much attention over the
last few years is substantiated by the statistics which claims that revenue in the smart home market
amounts to the US $73.719 million in 2019 and it is expected to show an annual growth rate (CAGR 2019-
2023) of 17.6 %, resulting in a market volume of US $141.220 millions by 2023 [1]. Within the smart
home technology, and optimization of building heating strategy is the leading target in the emission
reduction and the minimization of load on energy sources.

Generally, the use of heating energy is related to the building's thermal properties, the heating system
parameters, and the behavior of residents (which may be described by the observed behavioral patterns).
To investigate the first factor, several studies, for instance, [2] and [3] have been performed on the impact
of thermal properties on the heating process. Results obtained in these works tie together thermophysical
characteristics, in particular, heat transfer coefficient, heat conductivity/loss, etc., nevertheless it can be
improved by taking into account more precise models.

Extracted occupant behavioral patterns have been studied in an increasing number of studies, for
example, [4], [5], and [6]. Conducted experiments highlighted the possibility of using learnable models of
occupant behavioral patterns to minimize heating energy consumption.
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The investigation of heating system parameters via indirect modern approaches like machine
learning based on collected data lays beyond the scope of many smart home technologies because the
majority of heat sources are old-style gas/electric boiler-radiator systems (especially in Europe and Asia)
and it is difficult to get their settings measured over time. Also, new intelligent heating systems are being
intensively developed.

This work aims to broaden the knowledge of heating sources installed in a typical smart home using
the indirect approach, however, based on the heat transfer model. We propose an approach to utilize the
historical indoor temperature, the surface radiator temperatures, and the aggregated energy values as the
input parameters for the designed model, which describes the behavior of each heating source.

Problem statement

To start with, let’s consider a single-family smart home fully integrated with indoor/outdoor
temperature sensors, a smart thermostat, and temperature sensors installed on the radiator surfaces. The
latter may contain TRVs (thermostatic radiator valves). In this paper, the investigation of the effective
thermal parameters of heating sources is based on the data taken from those spaces, where radiators are
equipped with surface temperature sensors.

The heat transfer in the chosen space (Fig. 1) can be outlined in terms of the following differential
equation [7]:

c(r)r(r)%=div(k(r)NT(r,t))+g(r,t), 1)
where c(r) denotes the heat capacity coefficient, k (r) is the heat conductivity coefficient, r(r) denotes

the substance density, g(r,t) is the healing power, T (r,t) stands for the space temperature, t is the time
variable, r is the vector of spatial coordinates.

Fig. 1. Schema of heat fluxes in a room

Here, caution must be taken in the understanding of parameter g(r.t), i.e., g(r.t) is a part of

aggregated heating power consumption in the entire building, which stands for the part related to the
particular heating source, g(r,t) T Q(r,t), where Q(r,t) is the total heating power.

Integrating equation (1) over the radiator volume V, results in

crVy ﬂ-:rh(t) =kS(NTn)+G(t), )

where G(t) = g(t)V;, c? =cr is the effective radiator heat capacity, r is the notation corresponding to the
radiator entity, c is the radiator heat capacity, which is determined by the used material, r is the density
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of radiator material, T (t) is the averaged surface radiator temperature, ks (RNTxn)»ks(T-T,), n is the

normal vector, T is the average temperature in the room, S is the surface radiator area.
It is straightforward to verify that for each space

_ _ T, (t
(Tr (1)-T (1))ks =G (t) -cr f %t( ) , (3)
where ¢, :c’;Vr. Equation (3) describes the temperature dynamics in a space caused by the installed
heating source.
By generalizing equation (3) to the whole set of spaces and by taking into account the fact that only

the aggregated heating power is available, i.e., G(t) is unknown for each room, we can customize our

problem via the following representation:

8,770 -r0 - & el s ()50, ®

where wj ~ kS (wj is equivalent to ks ) is the effective thermal parameter of heating source % , calculated

at each time step j, T_(j) and G(j) are the average room temperature and the aggregated heating power
correspondingly, Dt is the duration of a time interval [j, j +1]. Estimation of the parameter w; for each space

(room) i can be expressed as w; :%éjw(j) x% ol Sj in the area of radiator surface, Siytg IS the total
ota
area of all radiator surfaces presented in a building, N is the total number of time intervals, j=1K ,N .
In case, if a term %Eﬂ(jﬂ) —T_r(j)g of the right side in (4) is insignificant, equation (4) can be
0

written in the simplified form
o &=(j) =(j)o (] j
angr(J) —T(J)ij -a i) (5)
Using the model (4), the problem of identification of the effective thermal parameter of heating
source is formulated as follows: given the indoor temperature data measured in each space with radiator,
the total heating energy consumed in the building, the surface radiator temperatures, and the radiator
surface areas, one has to calculate parameter w; over the time interval of the provided data measurements.

Data processing and calculations

For the numerical experiments to verify and investigate the proposed approach, we have chosen a
well-documented open-access REFIT Smart Home database [4]. It consists of temperature, energy, and
building parameters collected from twenty dwellings in the UK from a period of three years and it is
considered as the state-of-art database for smart home prototyping and research. In the current study, the

natural gas used to heat a sample dwelling, hence the gas readings collected m? are extracted from REFIT.
To simplify the current study, the SQL.ite engine has been used to store REFIT data along with Python 3
and Jupyter Notebook as the main programming environment.

A. Data preparation

To understand the samples — space and radiator temperatures as well as energy data (represented as
natural gas), firstly we visualize these readings obtained from the arbitrarily chosen winter day when
heating was on.

As it is seen from Fig. 2, the space temperatures do not significantly deviate in comparison with the
corresponding radiator temperatures. This fact explains low heat relaxation in the building. Aggregated gas
usage shows a clear correlation with the surface radiator temperatures which allows us to use these data in
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equation (4). Also, a delay between the rise of the surface radiator and the space temperatures can be
considered as the determiner of the heat conductivity coefficient k .

During the analysis of the provided dataset, we figured out that the aggregated gas G(t) is usually

contributed by many consumers like heating elements, cookers, washer, etc. Therefore, before the
substitution of G(t) into the equation (4), it should be cleared of the non-heating contributors.
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Fig. 2. Space (room), radiator temperatures, and aggregated gas consumption

To do that, we have developed the simple algorithm: a) summer gas usage G (t), tT[summer],

when heating process is off, is analyzed day-by-day to identify some typical time-based pattern; b) if
the pattern in a) is detected, then mean values corresponding to that pattern d{"ypicm (t) have to be

subtracted from the full-time series: G(t):=G(t)- Gfpical (t) . Time-based pattern identification can be

done via cluster analysis [8]. For example, the typical daily clusters can be determined using simple k-
means clustering. Since they are identified, the average value of the gas usage from each of the
clusters should be subtracted time-dependently from the original time series G(t). The results of the

mentioned in [8] algorithm are shown in Fig. 3.
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Fig. 3. Summer day-by-day gas usage (left) and annual heating gas usage after data cleansing (right)

A process of dealing with missing values, outliers, and general data cleansing is beyond this study,
nevertheless, these steps have been applied and discussed in [9].

To end up with this sub-section, the last step of data preparation should be made: due to different
length of available time series and dissimilar date-time intervals one must take into consideration the only
respective joint sub-series, i.e., the resulted joint array GRT (t) has been presented as follows:

GRT (t) =§G (). T (t). Ty (1)g., (6)

where each of the time series G(t), T (t) and T (t) is time-synchronized to each other.
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B. Calculation of the effective thermal parameters
In this sub-section, the main steps for the calculation of the effective thermal parameters w; are

discussed. After the preparation of joint arrays consisting of gas and temperature time series, one has to
select the proper time intervals for the next calculations. In our numerical experiments, only data from the
one arbitrary chosen building are used.

Firstly, we are interested in time intervals during the cold and transitive seasons (autumn and spring).
Summer periods are not important in this study, because the heating process is off and we can only
investigate the influence of the second term on the right side of the equation (4). Secondly, we consider
only those intervals, where the strong similarity between gas usage and surface radiator temperature
vectors are detected as for their direction. This allows us to omit the anomalies in data and ensure that only
the valid intervals have been selected.

To deal with the second step, we propose the next scheme: similarity calculation followed by data
normalization, which is required, because each time series has different value ranges.

Data normalization can be done via the well-known min-max feature scaling technique [10]:
(v =min () (o2 -1)

max (Y)-min(Y) )

Yk =bp+

where y, TY is the feature value, by and b, are the bound ranges?
With the completion of this step, we are now ready to apply the similarity validation step. As soon as

the condition xxy >0, x= G(j+1) - G(j) e Tr(j+l) —T(j) , is satisfied, the cosine similarity measure [11] is
used to validate the given intervals:

val _score = (xxy)/|x][ly|| thresh,, (8)
where x y are the vectors of data on each interval, thresh is the threshold value.

Here we are working only with a one-step interval defined by two consecutive points, but in the
general case, this approach can be expanded to deal with the intervals of different lengths using mean data
vectors.

Applying equations (7) and (8) to G(t) and T, (t) time series from joint array GRT (t) results in a
new array consisting of the selected data ranges. The latter ones are used to calculate parameter w; over

each of the obtained intervals:

j+1 j+1 =
i = 0 (60~ (ar (T ()T (9 /T )T (x2S WOOT:. ©
] ]

where yT[j+1 j+2], DG =o.5§c3(j+1) +G(j)§, DT =o.5a§(fr -T‘)(M) +(T -T‘)(j)f, oty =7+ 7, (0).
[’}

In equation (4), the right side includes, for the exception of the main term DG, the term associated
with the dynamics of the temperature DT, . The comparison of results obtained for the cases of taking into
account both terms and only the first one will be discussed in the next section.

Based on the above-mentioned equation (4) we have performed such steps: 1) for winter, spring and
autumn seasons a set of values w; has been calculated; 2) based on those values the average value

W = éjw j» where j=1K ,n has been chosen for each of the season and; 3) the seasonally averaged

D S|

value wg has been utilized to find the specific values of w; for each room in the studied building via

S%t al the multiplier. A short scheme (fig. 4) illustrates this algorithm.
otal
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Fig. 4. Scheme of the proposed algorithm

Results and discussions
In this section, the calculation results of the effective thermal parameter w are discussed. According to
the reported algorithm in the previous section, the calculations w have been carried out for the three seasons.

From Fig. 5, 6, and 7 we can see the pairs of distribution w; during winter, autumn, and spring, respectively.
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Fig. 5. Results for W during winter period

Each of the depicted pairs stands for calculation using the (4) and (5) equations. Here, we set the heat

-3 kWh

capacity coefficient ¢, » 10 . Required volumes V, have been approximately calculated based on

provided radiator sizes V, » 0.05 m3. The third item in each figure is the box plot which indicates those wj

which may be abnormal.
Regarding the use of box plots, it is seen that for each investigated season there are quite significant
dispersions of values wj . Not surprisingly, there are some inaccuracies in approximate calculations as well

as incorrect data readings from sensors collected in the dataset. Therefore, we have applied a simple outlier
detection method based on the Inter Quartile Range (IQR) [12] to eliminate undesired values. This method
uses first and third statistical quartiles to highlight those values which lie beyond the mentioned intervals.
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Fig. 6. Results for w; during the autumn period
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In a view of the mentioned above, we have obtained the results for WzNiéwj , calculated for

S j:1

each of seasons, where Ng is the number of time intervals during each of seasons (winter, autumn, and
spring), s is the corresponding season. Table 1 details these results.

Table 1
Averaged w for winter, autumn, and spring
Season Calculated using equation (4) Calculated using equation (5)
Winter »13 »12.9
Autumn »12 »12
Spring »9 »8

According to table 1, no noteworthy differences have been found while examining the values of
parameter w calculated for each of three seasons. Also, these findings substantiate our proposal to neglect
the second term of the right side in equation (4), because it does not cause any significant change of the
final results. The dissimilarities w; during the investigated seasons are related to the incomplete rejection
of outliers which appear in provided data.

To obtain w; for radiators following the available rooms we propose the following expressions:

3
_ 1o _ _ S:
Wil =3 AWs: Wi =quux%

total '
s=1

where wg corresponds to w calculated for the season s (winter, spring, and autumn).

This equation gives allows us to determine a set for effective thermophysical parameters of radiators
installed in different rooms. These results can be presented as follows:

(9)

Table 2
Calculated individual w; values
Room # 1 2 3 4 5 6 7 8 9
Wi 0.1 0.06 0.19 0.12 0.12 0.1 0.12 0.12 0.08

The evidence from this study highlights the idea that the effective thermophysical parameters of
heating sources can be estimated using the proposed model and data collected in a smart home via
temperature and energy sensors. This study has gone some way towards enhancing our understanding of
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the heating behavior and heating source's efficiency either. One possible application based on these
parameters is a smart home energy recommender system that enables residents to detect a malfunction or
prepare an optimized heating/cooling scheduler. Another example is utilizing calculated parameters w; for

energy disaggregation problems, i.e., splitting aggregated energy data into meaningful classes correspond
to time intervals and particular energy users. We hope that our research will help solve the discussed
problems as an important step in the smart home energy management research.

Conclusions

This paper has underlined the approach of estimation of the effective thermophysical parameters of
heating sources installed in smart homes which are equipped with temperature and energy meters. We have
proposed a thermophysical model as well as an algorithm of using collected data for determination and
investigation of required parameters. Within the model, the behavior of these parameters has been studied
using available data collected during three seasons: winter, autumn, and spring, when the heating process is
supposed to happen. The results of our modeling confirm the assumption that effective thermophysical
parameters wj are of the same range even regardless of the second term of the right side in equation (4)

which stands for an impact of the thermal capacity of the heating source.

Also, a method of calculating the individual effective thermophysical parameter for each room with
the installed radiator has been declared. To further our research we are planning to expand the idea of using
explored parameters in developing a rule-based machine learning algorithm to get the different heating and
energy-consuming scenarios for smart homes.
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BU3HAYEHHA EOEKTUBHUX TEIIJIOBUX ITAPAMETPIB JKEPEJI OBIT'PIBY
PO3YMHOTI'O BYJJUHKY HA OCHOBI IMHAMIYHNX BUMIPIOBAHb
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1o podoTy mMpHCBAYEHO MeTOAULi BU3HAYEHHS! e(peKTHMBHUX TEILUIOBUX NapaMeTpiB juKepesa oma-
JIEHHS1 Y PO3YMHOMY OyIUHKY, fIKa nepeadadyac KOMOIHAIiI0 3aCTOCYBAaHHSI AJNTOPUTMIB aHAMI3y AAHUX Ta
PiBHsIHHS (Pi3MYHOrO Mpolecy TenjonepeHocy. BukopucranHss Takux napamerpiB J03B0JISIE CTBOPIOBATH
NPOrpPaAMHO-aNIAPATHI PillleHHs /I8 MOJETIOBAHHA TEIJIOBOI KapTH OyAMHKY, a TAKOK 31iliCHIOBATH aHAJI3
€HeProcnoKUBAHHS Y KOHTEKCTI Moiesieil MAalIMHHOr0 HaB4YaHHs. OcKiIbKY, 31e0L1b1I0T0, BiToMe cymMapHe
CIOKUBAaHHA eHeprii 00irpiBy, iHTepec mpeacTapisic BU3HAYEHHSI Ti€l YacTHMHM eHepril, sika Biamosizae
OKpeMUM J:KepesiaM o0irpiBy. 3 1icro MeTor0 y crarri 3anponoHoBaHi MaTeMaTHYHA MOJIe]Ib Ta AJITOPUTM
151 OLIHKH e()eKTHBHMX TEIUIOBHX XapaKTepPHCTHK JKepes 00irpiBy Ha 0a3i piBHSIHHSA TelllonepeHocy Ta
MiIX0AIB CTATUCTUYHOIO AHAJI3ZY JAaHMX, SIKi MOJKHA BHUKOPUCTOBYBATH /ISl oTpuMaHHA indopmauii npo
inMBinyanbHi Jkepesa o0irpiBy. 3agaua BH3HAYEHHS] TAKUX NMapaMeTpiB 3BOAMTHCA /10 ABOX eramiB. Ha
NepimioMy erami, 3 BHUKOPHCTAHHSM CKIHYEHHO-Pi3HMIIEBOTO MiAX0AYy A0 PIiBHSIHHS TeIUIONepeHocy,
BU3HA4YeHO e()eKTHBHMIl TeIUIOBUII mapamerp ukepes o0irpiBy. Jlaui, 3a JaHUMM eHeprocrno:KMBaHHS Ta
po3nogiiaMu KiMHATHMX TeMIepATyp i TemmepaTyp Ha NOBepxHi OOIrpiBajJibHMX eJieMEHTIB, HLJISIXOM
3aCTOCYBAHHSI METOMIB AHAJI3Y JAHMX, 3alIPONIOHOBAHMII AJITOPUTM OLIHKU iHIAMBiAyaJLHHUX e(eKTUBHUX
TeIUIOBHX XapAKTEePHCTHK BCTAHOBJIEHUX B KIMHATAX 00IirpiBaIbHUX eJIeMEHTIB.

Kuro4oBi ci1oBa: iHTeeKTyaIbHUI JiM, ONTUMI3aLif eHeProBUTPAT, TENJI000MiH.



