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Компютінгове сховище – це парадигма навчання періодичних нейронних мереж на 
основі використання рекуррентної частина (так званого “резервуара”) інших показників. 
Еволюція систем визначила новий підхід, який фокусується на навчанні нечітких систем, щоі 
мають своїми параметрами їх структуру адаптації он-лайн. У даній роботі розвивається 
сховище нео-нечітка мережі, побудованої з використанням елементів затримки і нелінійних  
нео-нечітких синапсів, що означає еволюціонування  систем  і м’які обчислення об’єднуються  
в нову обчислювальну  систему. 

Ключові слова: сховище обчислювальне, еволюціонуюча система, гібридна  система, 
нео-нечіткої нейрон, онлайн процедура навчання, прогнозування. 

 
Reservoir Computing is a paradigm of training Recurrent Neural Networks based on 

treating the recurrent part (the so-called “reservoir”) differently from the readouts. This 
paradigm has become so popular recently due to its computational efficiency and the fact that 
it’s enough to train only a supervised readout. Meanwhile Evolving Systems define a new 
approach which focuses on learning fuzzy systems that have both their parameters and their 
structure adapting on-line. In this paper an evolving reservoir neo-fuzzy network is built using 
time delay elements and nonlinear neo-fuzzy synapses which means that Reservoir Computing, 
Evolving Systems and Soft Computing are combined in a new computational system.  

Keywords: reservoir computing, evolving systems, hybrid systems, neo-fuzzy neuron, 
online learning procedure, prediction. 

 
Introduction 

Reservoir Neural Networks (RNN) have been widely used in emulation and prediction tasks due to 
training a single linear output layer. Reservoirs are usually created randomly. So when the results don’t 
have a required accuracy we have to start over training our network.  

Evolving Systems (ES) are usually associated with streaming data and on-line (often real-time) 
modes of operation. They can be seen as adaptive intelligent systems with low-computational complexity. 
Evolving Systems assume on-line adaptation of system structure in addition to the parameter adaptation 
which is usually associated with the term “incremental”. 

Due to the implementation of a wide variety of adaptive, evolving and dynamic methodologies, they 
represent an important cornerstone within the field of “data-driven learning in non-stationary 
environments” [1,2]. Combining the favorable properties of (data-driven) fuzzy systems (especially 
universal approximation capabilities in connection with comprehensability and understandability aspects) 
with the concept of evolving modelling approaches may widen the applicability of fuzzy systems to on-line 
processing and modelling tasks. Under this scope, fuzzy systems inherit all the benefits and merits that 
evolving models have over batch modelling approaches [3-8]. 
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Reservoir neural networks were basically designed to have the same computational power as 
traditional recurrent neural networks except the fact that there’s no need to train internal weights [9-11]. 
The reservoir is a recurrent neural network which has n  inputs, h  internal units of the hidden layer and m  

output units. Input elements at a discrete time point k  form a vector ( )1x(k)  (k) (k)= K T
nx x , internal 

units form a vector ( )1s(k)  s ( ) s ( )=% % %K T
hk k  and finally output units form a vector 

( )1(k)  (k) (k)=% % %K T
mx x x . We take into consideration the simplest case when m  equals to 1. So in this 

case the output signal is a scalar value. 
Real-valued connection weights are collected in a ( )×h n  weight matrix inW  for the input weights, 

in an ( )×h h  matrix resW  for the internal connections, in an ( )× + +m h n m -matrix outW  for the 

connections to the output units, and in a ( )×n m -matrix backW  for the connections that feed back from the 
output to the internal units. The weight matrix inW  is usually created randomly and can be either full or 
sparsed. The weight matrix resW  is usually randomly created according to Gaussian distribution. It can be 
easily explained by the fact that a network creates a reservoir full of different nonlinear current and 
preceding values (the so-called “echo”). Connections directly from the input to the output units and 
connections between output units are allowed. A reservoir should have a suitable perceptibility. The 
simplest way to make it is to tune a spectral radius (the biggest eigenvalue) of weight matrix resW . 

The activation of internal units is updated according to expression 
 

( ) ( )in backs 1   f W (k+1) W (k) W (k) ,resk x s x+ = + +% % %  (1) 
 
where  ( )s 1+% k  is a vector of reservoir states at a time point k , where ( )1 Pf  f f= K  – the internal unit's 
output functions (typically sigmoid functions).  

The output is computed according to equation 
 

( )
( )
( )out out

1
1   f W ,

1

  +
 + =   +   

%
%

s k
x k

x k
 (2) 

where ( )out out1 out Tf  f   f= K  – the output unit’s output functions. 

The most interesting thing about reservoirs is that all weight matrices to the reservoir are initialized 
randomly, while all connections to the output are trained. When using the system after training with the 
“reservoir-output” connections, the computed output by is fed back into the reservoir. 

Reservoir construction is largely driven by a series of randomized model-building stages, which rely 
on a series of trials and errors. Typical model construction decision of an echo state network involves 
setting the reservoir size, the sparsity of the reservoir and input connections, the ranges for random input 
and reservoir weights, and the reservoir matrix scaling parameter. A simple, deterministically constructed 
cycle reservoir is comparable to the standard echo state network methodology [12]. The short-term 
memory capacity of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.  

In this case the reservoir is created with the help of time delay elements and bell membership 
functions instead of traditional sigmoid functions. The reservoir output depends linearly on the inputs. So 
we propose to use neo-fuzzy neurons [13-15] in the output layer of the reservoir. We also propose a rather 
simple and quick learning algorithm. 

A disadvantage of the NFN model is that it assumes that the nonlinearities of the inputs are 
separable. So the NFN model is not a universal approximator, in contrast to the neural nets or to the 
conventional fuzzy systems. But it possesses better approximation properties comparing to linear models, 
as it has more degrees of freedom allowing good piecewise-linear approximation for many processes and 
imposing very low requirements on the computational resources. The most important advantage of the 
NFN model is its extremely fast learning which can be performed in an online mode with very simple 
weight update rules, or in just a single operation with the linear least-squares formula. 
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An evolving network architecture 
The proposed evolving reservoir neo-fuzzy architecture sets up both network parameters and 

network architecture.  
Neo-fuzzy neurons were proposed by T. Yamakawa and co-authors [15]. These constructions are 

neuronal models with nonlinear synapses. The output of the nonlinear neuron is obtained by sum of the 
synapses outputs represented by nonlinear functions. They can approximate a nonlinear input-output 
relationship by one neuron, and there is no local minimum problem in learning [13, 14]. Fig.1 shows a 
structure of the conventional NFN. An input signal ( )x k  is fed into the NFN layer. It should be mentioned 
that this construction has back connections which come through the layer of delay elements from NFN 
outputs back to their inputs [16-18]. 

 

 
 
We could get a MISO-object (multi-input single-output) schema by joining advantages of the 

above-mentioned reservoir and evolving computing approaches and using a neo-fuzzy synapse as a basic 
element of our new system. The reservoir is formed with the help of time delay elements and nonlinear 
synapses. If the required accuracy is not high enough while processing data one more nonlinear synapse is 
added to the network which turns a system into a NARMA(1,1)-object. We could also get in a simple way 
a NARMA(2,1)-object. 

The simplest NAR first-order architecture [15] based on neo-fuzzy synapses is in fig.1. ( )x k  is an 
input value of the network, ( )%x k  is a network output, = 1,2, , ,K Kk N - current discrete time. 
 

 

Fig.1. The structure of a conventional  
neo-fuzzy neuron which consists of 

nonlinear neo-fuzzy synapses  

Fig.2. The simplest “reservoir” architecture 
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( )( ) ( )( ) ( )1 1
1

( 1) .
=

+ = = ∑%
h

j j
j

x k f x k x k w kµ  (3) 

 

 
 

( )( ) ( )( )( 1) ,x k f x k f x k+ = + %% % %  (4) 
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1
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=
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( )( ) ( )( ) ( )( )( 1) 1 ,+ = + − + %% % % %x k f x k f x k f x k  (7) 

( )( ) ( )( ) ( )2 2
1

1 1 .
=

− = −∑%
h

j j
j

f x k x k w kµ  (8) 

Fig. 3. NARMA(1,1)-object 

Fig. 4. NARMA(2,1)-object 
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Taking into consideration a NARMA(n,1)-object the output can be written  
 

( )( ) ( )( ) ( )( ) ( )( )( 1) 1 ... 1 .+ = + − + + − + + %% % % % %x k f x k f x k f x k n f x k  (9) 
 

Membership functions usually form a set of functions similar to the function array shown in fig. 5. 
In our case membership functions are evenly distributed  in the range [ ]0,1 .   

It should be noticed that triangular membership functions provide piecewise-linear approximation 
which can lead to the results accuracy deterioration. To minimize this effect one may increase the amount 
of membership functions but this will increase the amount of synaptic weights and make a system 
architecture much more complicated as well as its learning algorithm. Cubic splines should be used as 
membership functions to get rid of the above-mentioned situations which can be written in the form: 
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(10) 

 

Cubic splines satisfy Ruspini partition too and improve approximation characteristics of the fuzzy 
inference process. On the other hand, the usage of cubic splines provides smooth polynomial 
approximation and allows to model nonstationary signals with high accuracy results (fig. 5). 

 

 
 

Fig. 5 – Cubic spline membership functions 
 
Taking into consideration a ( )( )1 1+ ×n h -vector of membership functions values 
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where q  stands for an amount of neo-fuzzy synapses in the evolving reservoir network architecture ( 1−q  
says that the architecture hasn’t been changed, q  says that the architecture has been updated which means 
that new synaptic weights and membership functions have been added to the network architecture), and a 
synaptic weights vector of the same dimensionality 
 

 

( ) ( )( )( ( )( ) ( )( )(
( )( )( ( )( ))
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[ 1] [ ]
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− − −
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the network output can be presented in a vector form  
 

( ).=% Tx w kµ  (11) 

 
A Learning Procedure 

To find optimal values of synaptic weights the conventional learning criterion  
 

( ) ( ) 2

1

1 ˆ
2

−

=

= −∑
N

N k

k
E y k y k α  (12) 

 

and an adaptive procedure are used: 
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(13) 

 
Conclusion 

The proposed architecture forms an evolving “reservoir” which is built using neo-fuzzy synapses. 
This network is designed to deal with nonstationary time series. The network has such advantages as 
numerical simplicity and high processing speed while comparing it to traditional forecasting neural 
networks and neuro-fuzzy systems.  
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