APXITEKTYPA TA KOMIIOHEHTH
KOMIT OTEPHUX CUCTEM

004.032.26

0. Tyshchenko, I. Pliss
Kharkiv National University of Radiod ectronics,
Control System Research Laboratory

AN EVOLVING RESERVOIR NEO-FUZZY NETWORK
FOR TIME SERIESPREDICTION

© Tyshchenko O., Pliss|., 2014

KommioTiHroBe cxoBuile — 1€ MApaIurMa HABYAHHS MePioIMYHMX HEPOHHUX Mepex Ha
OCHOBi BHKOPHCTAHHSI PeKYPPEHTHOI 4YacTHHA (TaK 3BaHOTrO ‘pe3epByapa’) iHIIMX NMOKA3HHMKIB.
EBoutioniist cucTeM BU3HAYMIIA HOBMIA MiAXi, sikuii GOKYCYyeThCA HA HABYAHHI HEYITKUX CHCTEM, HIOi
MalTh CBOIMH NapaMeTpaMM iX CTPYKTYpPY ajanTtauii oH-jaiiH. Y fnaHiii po0oTi po3BUBaETbLCS
CXOBHIIle Heo-HeUiTKa Mepe:ki, Mo0y10BaHOI 3 BUKOPHCTAHHAM eJIeMEHTIB 3aTPUMKHM i HeJTiHiliHIX
HeO-HeYiTKUX CHHAICIB, 110 03HAYAE €BOJIIOI[IOHYBAHHSI CHCTEM i M’ sIKi 00YHCIeHHS 00 €THYIOThCS
B HOBY 00UYHC/TIOBAJILHY CHUCTEMY.

Kiro4oBi ciioBa: cxoBullle 00YUCTIOBA/IbLHE, €BOJIONIOHYI0YA CHCTEMA, NOpUAHA CHCTeMa,
Heo-HeviTKOI HelPOH, OHJIAIH mpoueTypa HABYAHHS, MPOTHO3YBAHHSI.

Reservoir Computing is a paradigm of training Recurrent Neural Networks based on
treating the recurrent part (the so-called “reservoir”) differently from the readouts. This
paradigm has become so popular recently due to its computational efficiency and the fact that
it's enough to train only a supervised readout. Meanwhile Evolving Systems define a new
approach which focuses on lear ning fuzzy systems that have both their parameters and their
structure adapting on-line. I n this paper an evolving reservoir neo-fuzzy network is built using
time delay elements and nonlinear neo-fuzzy synapses which meansthat Reservoir Computing,
Evolving Systems and Soft Computing are combined in a new computational system.

Keywords: reservoir computing, evolving systems, hybrid systems, neo-fuzzy neuron,
online lear ning procedur e, prediction.

I ntroduction

Reservoir Neural Networks (RNN) have been widely used in emulation and prediction tasks due to
training a single linear output layer. Reservoirs are usually created randomly. So when the results don't
have a required accuracy we haveto start over training our network.

Evolving Systems (ES) are usually associated with streaming data and on-line (often real-time)
modes of operation. They can be seen as adaptive intelligent systems with low-computational complexity.
Evolving Systems assume on-line adaptation of system structure in addition to the parameter adaptation
which is usually associated with the term “incremental”.

Due to the implementation of a wide variety of adaptive, evolving and dynamic methodologies, they
represent an important cornerstone within the field of “data-driven learning in non-stationary
environments’ [1,2]. Combining the favorable properties of (data-driven) fuzzy systems (especially
universal approximation capabilities in connection with comprehensability and understandability aspects)
with the concept of evolving modelling approaches may widen the applicability of fuzzy systemsto on-line
processing and modelling tasks. Under this scope, fuzzy systems inherit al the benefits and merits that
evolving models have over batch modelling approaches [3-8].

3

Reservoir neural networks were basically designed to have the same computational power as
traditional recurrent neural networks except the fact that there’s no need to train internal weights [9-11].
Thereservoir isarecurrent neural network which has n inputs, h internal units of the hidden layer and m

output units. Input elements at a discrete time point k form a vector x(k) = (xl(k)Kxn(k))T, internal
units form a vector $k) = (%1(k)K%h(k))T and finally output units form a vector

(k) = (%1(k)K%,n(k))T. We take into consideration the simplest case when m equals to 1. So in this
case the output signal is a scalar value.
Real-valued connection weights are collected ina (h” n) weight matrix W, for the input weights,

in an (h” h) matrix W,es for the internal connections, in an m” (h+n+m)-matrix W, for the
connections to the output units, and ina (n” m)-matrix Wy, for the connections that feed back from the
output to the internal units. The weight matrix W,, is usually created randomly and can be either full or

sparsed. The weight matrix W, is usually randomly created according to Gaussian distribution. It can be

easily explained by the fact that a network creates a reservoir full of different nonlinear current and
preceding values (the so-called “echo”). Connections directly from the input to the output units and
connections between output units are allowed. A reservoir should have a suitable perceptibility. The
simplest way to make it is to tune a spectral radius (the biggest eigenvalue) of weight matrix Wi .

The activation of internal units is updated according to expression

Bk +1) = f (WinX(k+1) + W, e8(K) + Wiaa X(K)),)

where §(k +1) isavector of reservoir states at atimepoint k , where f = (f;Kfp) —theinternal unit's

output functions (typically sigmoid functions).
The output is computed according to equation

%(k+1) = fougW, S(k+2)10)
+1) = Tout t & as,
ou é out & (k+l)gg

where fqo :(foutl K foutT) — the output unit’s output functions.

The most interesting thing about reservoirs is that all weight matrices to the reservoir are initialized
randomly, while all connections to the output are trained. When using the system after training with the
“reservoir-output” connections, the computed output by is fed back into the reservair.

Reservoir construction is largely driven by a series of randomized model-building stages, which rely
on a series of trials and errors. Typical model construction decision of an echo state network involves
setting the reservoir size, the sparsity of the reservoir and input connections, the ranges for random input
and reservoir weights, and the reservoir matrix scaling parameter. A simple, deterministically constructed
cycle reservoir is comparable to the standard echo state network methodology [12]. The short-term
memory capacity of linear cyclic reservoirs can be made arbitrarily closeto the proved optimal value.

In this case the reservoir is created with the help of time delay elements and bell membership
functions instead of traditional sigmoid functions. The reservoir output depends linearly on the inputs. So
we propose to use neo-fuzzy neurons [13-15] in the output layer of the reservoir. We also propose a rather
simple and quick learning algorithm.

A disadvantage of the NFN model is that it assumes that the nonlinearities of the inputs are
separable. So the NFN model is not a universal approximator, in contrast to the neural nets or to the
conventional fuzzy systems. But it possesses better approximation properties comparing to linear models,
as it has more degrees of freedom allowing good piecewise-linear approximation for many processes and
imposing very low requirements on the computational resources. The most important advantage of the
NFN modd is its extremely fast learning which can be performed in an online mode with very simple
weight update rules, or in just a single operation with the linear |east-squares formula.

An evolving network architecture
The proposed evolving reservoir neo-fuzzy architecture sets up both network parameters and

network architecture.
Neo-fuzzy neurons were proposed by T. Yamakawa and co-authors [15]. These constructions are

neuronal models with nonlinear synapses. The output of the nonlinear neuron is obtained by sum of the
synapses outputs represented by nonlinear functions. They can approximate a nonlinear input-output
relationship by one neuron, and there is no local minimum problem in learning [13, 14]. Fig.1 shows a
structure of the conventional NFN. Aninput signal x(k) isfed into the NFN layer. It should be mentioned
that this construction has back connections which come through the layer of delay elements from NFN
outputs back to their inputs [16-18].

Fig.1. The structure of a conventional
neo-fuzzy neuron which consists of
nonlinear neo-fuzzy synapses

We could get a MISO-object (multi-input single-output) schema by joining advantages of the
above-mentioned reservoir and evolving computing approaches and using a neo-fuzzy synapse as a basic
element of our new system. The reservoir is formed with the help of time delay e ements and nonlinear
synapses. If the required accuracy is not high enough while processing data one more nonlinear synapse is
added to the network which turns a system into a NARMA(1,1)-object. We could also get in a simple way
aNARMA(2,1)-object.

Thesimplest NAR first-order architecture [15] based on neo-fuzzy synapsesisinfig.1l. x(k) isan
input value of the network, %(k) isanetwork output, k =1,2,K,N,K - current discretetime.

x(k+1

C-
&

I e | T !

Fig.2. Thesimplest “ reservoir” architecture

| | (i)

h

Kk 1) = £ (x(K)) =@ m; (x(K)) v (k).

=

x(kA+1)

e l
—7 @

|

])) S le(k+l

j=1
x(k+1)
A = \ L

Fig. 3. NARMA(L,1)-object

Fig. 4. NARMA(2,1)-object

f(k+1)=f (%(K)) + f (%(k- 1))+ £ (X(K)),

F(x(k- 1)=& my (x(k- D)y (1)
j=1

3

(4)

(%)

(6)

(7)

(8)

Taking into consideration a NARMA(n,1)-object the output can be written

f(k+1)= £ (X(K))+ £ (%(k- 1)) +...+ £ (%(k- n+1))+ f (%(K)).

(9)

Membership functions usually form a set of functions similar to the function array shown in fig. 5.
In our case membership functions are evenly distributed in the range [O,l] .

It should be noticed that triangular membership functions provide piecewise-linear approximation
which can lead to the results accuracy deterioration. To minimize this effect one may increase the amount
of membership functions but this will increase the amount of synaptic weights and make a system
architecture much more complicated as well as its learning algorithm. Cubic splines should be used as
membership functions to get rid of the above-mentioned situations which can be written in the form:

my (%) =

i .30
|02592+,22)§ Clj Cljl GQ)Q Clj Cljl(?
: Clj Cl,j-l Clj c3,]-1 ga
T

!02592 QZ)Q G,j+1-Gj GQ)Q Gj+- Clj

: g G,j+1- Gj G j+1- Gj 6;
10, othews

T

T

)

X S:IJ 1C'Ju’

X1 (6], (10

Cubic splines satisfy Ruspini partition too and improve approximation characteristics of the fuzzy
inference process. On the other hand, the usage of cubic splines provides smooth polynomial
approximation and allows to model nonstationary signals with high accuracy results (fig. 5).

Fig. 5 — Cubic spline member ship functions

Taking into consideration a ((n +1) h) " 1-vector of membership functions values

)= o (s 3 (- v k- 2):

(”Ef]] (k- n+3));K”ﬂ1h(%(k)))T’

where g stands for an amount of neo-fuzzy synapses in the evolving reservoir network architecture (q- 1
says that the architecture hasn’t been changed, q says that the architecture has been updated which means
that new synaptic weights and membership functions have been added to the network architecture), and a
synaptic weights vector of the same dimensionality

0 <ot ol e 2
(V‘mﬂ (x(k- n+3)):KV‘HJ,h(%(k)))T’

the network output can be presented in a vector form

%szm(k). (11)

A Learning Procedure
To find optimal values of synaptic weights the conventional learning criterion

1 \ ~ A2 N-k
E=> aly(k)- (k)| a (12)
k=1
and an adaptive procedure are used:

B2 Rt k)2

wWi(k+1) = <;|_ =+h9(k)e(k- 1)cL_ 5

i

T

T

I +
S1005 Enfl (k1)
I (13)
|

|

(k) =(r (k) "

rq(k+1 arql an (k+1)H Hnﬂﬂ(kﬂ)u
,O<a£1.

Conclusion
The proposed architecture forms an evolving “reservoir” which is built using neo-fuzzy synapses.
This network is designed to deal with nonstationary time series. The network has such advantages as
numerical simplicity and high processing speed while comparing it to traditional forecasting neural
networks and neuro-fuzzy systems.

1. Lughofer E. On-line incremental feature weighting in evolving fuzzy classifiers // Fuzzy Sets and
Systems. — 163(1). — 2011. — P. 1-23. 2. Lughofer E. Evolving Fuzzy Systems — Methodol ogies, Advanced
Concepts and Applications // Studies in Fuzziness and Soft Computing. — Springer, 2011. — 410p.
3. Angelov P., Lughofer E., Zhou X. Evolving fuzzy classifiers using different model architectures // Fuzzy
Sets and Systems. — 159(23). — 2008. — P. 3160-3182. 4. Baruah R.D., Angelov P. Evolving fuzzy systems
for data streams. a survey // Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery. — 1(6). —
2011. — P. 461-476. 5. Angelov P., Zhou X. Evolving Fuzzy-Rule-Based Classifiers From Data Streams //
|EEE Fuzzy Systems. — 16(6). — 2008. — P. 1462-1475. 6. Angelov P., Zhou X. Evolving Fuzzy Classifier for

8

Novelty Detection and Landmark Recognition by Maobile Robots // Mobile Robots. — 2007. — P. 89-118.
7. Angelov P. A fuzzy controller with evolving structure // Information Science. — 161(1-2). — 2004. — P.
21-35. 8. Kasabov N. Evalving Connectionist Systems. The Knowledge Engineering Approach. — Soringer
London, 2007. — 451p. 9. Alexandre L.A., Embrechts M.J. Reservoir size, spectral radius and connectivity
in static classification problems // ICANN 2009, Part |, LNCS5768. — Springer-Verlag, Berlin Heidelberg,
2009. — P. 1015-1024. 10. Jaeger H. The echo-state approach to analysing and training recurrent neural
networks // Technical report, German National Research Centre for Information Technology. — 2001. —
45p. 11. Jaeger H. Short-term memory in echo state networks // Technical report, German National
esearch Centre for Information Technology. — 2001. — 36p. 12. Rodan A., Tino P. Minimum complexity
echo state network // IEEE Transactions on Neural Networks. — 22(1). — 2011. — P. 131-144. 13. Miki T.,
Yamakawa T. Analog implementation of neo-fuzzy neuron and its on-board learning // Computational
Intelligence and Applications. — Piraeus: WSES Press, 1999. — P. 144-149. 14. Uchino E., Yamakawa T.
Soft computing based signal prediction, restoration and filtering // Intelligent Hybrid Systems: Fuzzy
Logic, Neural Networks and Genetic Algorithms. — Boston: Kluwer Academic Publisher, 1997. — P. 331-
349. 15. Yamakawa T., Uchino E., Miki T., H. Kusanagi. A neo fuzzy neuron and its applications to system
identification and prediction of the system behavior // Proc. 2-nd Int.Conf. on Fuzzy Logic and Neural
Networks “ 11ZUKA-92" . —lizuka, Japan, 1992. —P. 477-483. 16. Bodyanskiy Ye., Tyshchenko O. Neo-fuzzy
forecasting echo state network // Proc. 4th Int. Conf. ACSN-2009. — Lviv: NVF “ Ukrainski Tehnologii”,
2009. — P. 95-96. 17. Bodyanskiy Ye., Tyshchenko O. The reservoir predictive neuro-fuzzy network // Proc.
Int. Conf. on Intellectual Systems for Decision Making and Problems of Computational Intelligence. —
Vol.1. — Kherson: KhNTU, 2010. — P. 279-282. 18. Tyshchenko O., Pliss |. The forecasting neuro-neo-
fuzzy network based on reservoir computing // Control Systems, Navigation and Connection Systems. —
No.1(21), Vol.2. —Kyiv, 2012. —P. 123-126.

