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Abstract. A nonlinear differential equation of the force of direct central quasistatic impact of 
elastic bodies bounded in the area of their contact by rotation surfaces is compiled. To determine the 
coefficients of the equation and the order of its degree nonlinear force, we used the well-known 
solution of the axisymmetric contact problem of elasticity theory, constructed in due time by 
I. Ya. Shtaerman, for the case of dense static contact of bodies, when the order of their boundary 
surfaces is not lower than the second. In the case of the second order, it goes into the well-known 
static solution of G. Hertz, whose assumption in the theory of shock is also taken here in the 
formulation of the dynamics problem. A closed analytic solution of the composite differential 
equation with respect to the force of impact as a function of time is constructed. It is expressed 
through Ateb-sine. This function also describes the process of motion of the centers of mass of 
bodies in the stages of their compression and expansion. Compact formulas are derived for 
calculating the maximum values of the impact force, the approach of the centers of mass of the 
bodies and the duration of the impact. Thanks to the use of the Ateb-sine and its approximation by 
elementary functions, it was possible to obtain a fairly simple scan of the fleeting process of 
mechanical shock in time. It is shown that well-known dependencies that describe the impact of 
elastic balls follow from the derived formulas. Examples of calculations are given in which the 
influence of various factors on the main characteristics of the impact is investigated. It is noted that 
the theory set forth concerns only the impact of bodies with low velocities, when plastic deformation 
does not occur during their dynamic compression. To extend the theory beyond the limits of 
elasticity, it is necessary to determine a constant for the stage of compression  in the impact force 
equation not by calculation, but by experimental method. Then, during compression and 
decompression of bodies, the impact force will be described by different analytical expressions, and 
the speed recovery coefficient will become less than one, which is consistent with practice. 

Keywords: impact force equation, analytical solution, Ateb-sine, rapprochement of centers of 
mass, duration of impact. 

Introduction 
There are four main variants of mechanical impact theory. The first of these is the stereo mechanical 

shock theory, which is based on Newton's hypotheses. It is traditionally covered in courses in theoretical 
mechanics [1]. Much later, the second and third variants appeared. This is the corresponding wave theory 
of shock proposed by Saint-Venan [2], which does not take into account local deformations and quasi-
static Hertz theory [3], which does not take into account wave processes in dynamic compression of 
bodies. The fourth option includes hybrid theories, where the aforementioned, for example, wave and 
quasistatic theories are combined [4]. 
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Problem Statement 
When implementing hybrid theories traditionally, starting with S. P. Tymoshenko [5], make up the 

nonlinear integral equation of the impact force, and then solve it by numerical methods, replacing the 
integrals with known sums [6]–[8]. Thus, a graph of the process of changing the force of impact over time 
is obtained, and then other characteristics are calculated. But today there are few analytical solutions in 
which the scan of the impact force and other parameters in time is described by closed formulas. Such 
formulas were obtained only in [3] by an approximate solution of the integral equation of impact force. 
The use of Ateb-functions opens the possibility to obtain accurate analytical solutions of differential 
equations of impact force. This is the opportunity that is implemented in this article. 

Analysis of modern information sources 
The theory of Ateb-functions has been developed and has become widespread in solving applied 

problems thanks to the work of mathematicians and mechanics of the Lviv School [9]–[13]. Their use has 
made it possible to solve analytically many complex problems in the theory of oscillations of nonlinear 
mechanical systems [14]–[17]. Proceeding from this, in [18] even the study of these functions in an 
advanced course of theoretical mechanics was proposed. Ateb-functions continue to be used in theoretical 
studies by foreign authors [19], [20]. Recently, they have become an effective means of solving the 
problems of quasistatic impact of solids [21]–[23], where they analytically describe fleeting processes. To 
further illustrate the capabilities of these functions in shock theory, the goal of this work was set. 

Statement of purpose and tasks of research 
The purpose of the article is to analytically solve the nonlinear differential equation of the impact 

force of elastic bodies bounded in the field of their contact by high order rotation surfaces and to use the 
solution to analyze the influence of various factors on the dynamic interaction process. 

Main material presentation 
When setting the impact problem here we use the Hertz theory, but we build the solution of the 

problem not in displacements, but in efforts. After determining the impact force as a function of time, it is 
now quite simple to determine the other characteristics of the process. In this case, the static dependences 
of the strain on the force obtained by I. Ya. Staerman for the case of tight contact of bodies of revolution 
[24] are important. As a result, they lead to a generalization of Hertz’s results in impact theory. 

1. Differential equations of impact force 

According to the quasistatic theory of impact, the approach of the centers of mass of bodies ( )x t , 
after their collision, is described by the equation: 

 Mx P= -&& , (1) 

in which 1 2

1 2

 m mM
m m

=
+

 – equivalent mass; 1m , 2m  – masses of bodies involved in impact; ( ) P P t=  – 

force of shock interaction; the dot denotes the derivative of x  with respect to t . 
In order to have an additional dependence of x  on P , we assume that in the contact area of the body 

are bounded by the surfaces of rotation ( )1 1 z f r=  and ( )2 2 z f r=- , that the axis of symmetry 0z  passes 
along the line of action of dynamic compressive forces (Fig. 1). 

We assume that, when  0r =  non-zero, derivatives of functions ( )1f r  and ( )2f r , since their 2n -th 
order, that is:  

( ) ( ) ( ) ( )1 20  0 0j jf f= = , when  2j n<= , 
( ) ( ) ( ) ( ) ( )2 2

1 20  0 2 !n nf f n A+ = , 
where A  – positive constant; 1, 2, ...n =  
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Then according to the I. Ya. Staerman’s decision [24]: 
 x kPl= , (2) 

moreover: 

2  
2 1

n
n

l =
+

; ( )( ) ( )
( )

12
2 12 1

1 22 1 2 !!
 

4 2 1 !!
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nnn Q Q n A

k
n n

++ é ùé + + ù
= ê úê ú -ê úë û ë û

; 
2
1

1
1

1Q
E
n-

= ; 
2
2

2
2

1Q
E
n-

= , (3) 

where 1E , 2E , 1n , 2n  – respectively, the modulus of elasticity and the Poisson coefficients of the materials 
of the bodies. 

 
Fig. 1. Contact diagram of rotation bodies 

Note that in the case of 1n =  dependencies (2), (3) correspond to the contact interaction of balls’ 
radiuses 1R  and 2R . 

For this n : 

1 2

1 1 1
2

A
R R

æ ö
= +ç ÷

è ø
; 2

3
l = ; ( )

2/3

1 2
1 2

1 2

3
4

R Rk Q Q
R R

æ ö+
= +ç ÷ç ÷×è ø

, 

which is a well-known result [3, 4]. 
Taking two derivatives of t  from expression (2), we obtain: 

1  x k P Pll -= && , ( ) 2 2 11x k P P P Pl ll l - -é ù= - × +ë û
& &&&& . 

Substituting these dependencies in (1), we arrive at Eq.: 

( )
2 2

1 0P PP
P kM

l

l
l

-

+ - + =
&&& . (4) 

Given the absence t , by replacement dPP P
dP

=
&&& & , instead of (4), we obtain the Bernoulli equation: 

( )
2

1 0dP P P
dP P kM P

l

l
l

-

+ - + =
& &

& , (5) 

which determines the force of impact. 

2. Constructing the equation of impact force 
We look for the solution of equation (5) as the product of two unknown functions: 

( ) ( )P F P G P= ×& . (6) 

Then dP dF dGG F
dP dP dP

= × +
&

 and (5) we reduce to two first order differential equations: 

( )1dF F
dP P

l= - ; 
2

2

dG P
dP kM GF

l

l

-

= - . 
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Consistent integration of these results is accurate to constant C : 

( ) 1F P P l-= ; ( ) ( )
12

1
PG P C

kM

l

l l

+

= -
+

. (7) 

Let сP  denote the maximum force value at the end of the compression process, when 0P =& . Then 

the constant C  gets value 
( )

12
1

сPC
kM

l

l l

+

=
+

, and the solution (6), given (7), takes the form: 

( )
( ) ( )2 1 1 12

1 c
dPP P P P
dt kM

l l l

l l
- + += = -

+
& . 

Integrating this expression gives the relation: 

( ) ( ) ( )2 1 1 1
0

2
1

P

c

dP t
kMP P Pl l l l l- + +

=
+-

ò . 

Moving to a new integration variable cP P u=  reduces it to the equation: 

( ) ( ) ( )

/ 1

2 1 1
0

2
11

cP P
cPdu t

kMu u

l

l l l l

-

- +
=

+-
ò . 

Further replacement ulx =  gives it a more compact shape: 
( )/

1
0 1

cP P d t
l

l
l

x
g

x
+

=

-
ò , (8) 

where 

( )
12

1
cP

kM

ll
g

l

-

=
+

. (9) 

Using the integral representation of the Ateb-sine [13, 16], from (8) we obtain the solution of the 
differential equation (5): 

( )
1/

1 1Sa ,1,
2cP t P t

l
l

g
l l

é ù+æ ö= ç ÷ê úè øë û
. (10) 

Denote by сt  the duration of the compression process, at the end of which ( )с cP t P= . Then, 

according to (10), equality is satisfied: 
1 1Sa ,1, 1

2 сt
l

g
l l

+æ ö =ç ÷
è ø

, 

or: 
1

1
0 1

c
dt

l
l

x
g

x
+

= I =

-
ò . (11) 

Since this integral is expressed in terms of gamma functions [25], then: 

1
1 31
2 2

l
p l l

ll
l

æ öGç ÷+è øI = ×
++ æ öGç ÷+è ø

. (12) 
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Further, according to the theorem about change of amount of motion, we have: 
1/

0
0

1 1Sa ,1,
2

ct

cM P t dt
l

l
u g

l l
é ù+æ ö= ç ÷ê úè øë û

ò . (13) 

By substituting tg h=  for expression (13) we give the form: 
1/

0
0

1 1 2Sa ,1,
2 1

c cP PM d
l

l l
u h h

g l l g l

I é ù+æ ö= = ×ç ÷ê ú +è øë û
ò . 

Then: 

( )
1

0

22
1 1
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M kM

lll
g

u l l

-

= × =
+ +

. (14) 

The dependence (9) is taken into account here. 
It follows from (14) that: 

1
2 1
0 1

2c
MP

k

lu l
l

+æ ö+
= ×ç ÷

è ø
, 

( )

1
11

0

0

2
1k M

l
llu l

g
l u

++ é ùæ ö= ê úç ÷ +è ø ê úë û
. (15) 

Formulas (10) and (15) determine the maximum impact force and the change in force over time. 
Using these dependences and (2), the approach of the centers of mass of the bodies was found. It is 
expressed by: 

( ) 1 1Sa ,1,
2cx t x tl

g
l l

+æ ö= × ç ÷
è ø

. (16) 

The maximum approach is: 
2 1
0 01

2c c
Mx kP k

k

l
l

l u ul
l g

+æ ö+
= = × =ç ÷

è ø
. (17) 

The duration of the collision process, according to (11), (12), is equal: 

0

1
1 31
2 2

c
c

xt

l
p l l

lg u l
l

æ öGç ÷I +è ø= = × ×
++ æ öGç ÷+è ø

, 

which together with (15) and (17) determines the basic parameters of impact. 
The second stage of impact (body stretching) is symmetrical in time relative to the vertical ct t= . 

Therefore, formulas (10) and (16) remain valid at this stage, but it is advisable to replace them for 
convenience of calculations: 

1 1Sa ,1,
2

tl
g

l l
+æ ö

ç ÷
è ø

 on ( )1 1Sa ,1, 2
2

tl
g

l l
+æ öI -ç ÷

è ø
. 

Then you can get result by calculating the values of the Ateb-sine in the first quarter of its period, 
when [ ]0;tg Î I . 

One-act impact ends at 2 ct t= . 
In the case of 1n = , the resulting solutions take the form: 

( )
3/2

03 5Sa ,1,
2 4c

с

P t P t
x
ué ùæ ö

= ×ê úç ÷
ê úè øë û
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2 4c
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x t x t
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; 

3/52
05

4c
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k
uæ ö

= ç ÷
è ø

; 
2/52

3/5 05
4c

Mx k uæ ö
= ç ÷

è ø
. 
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These results differ only in designation from those obtained in [21]. 
The case of large n  is also noteworthy, when the limiting surfaces of the bodies of revolution 

approach the planes. When 1n ? , 1l » , 1 1Sa ,1, sin
2

tt
kM

l
g

l l
+æ ö »ç ÷

è ø
, 1

kM
g » , ( ) sinc

tP t P
kM

» , 

( ) sinc
tx t x
kM

» , 
1/22

0
c

MP
k
uæ ö

» ç ÷
è ø

, 0cx kMu» . 

Impact duration is ( )
( )0

1/ 222
1

c
c

xt kM
p

p
g u

GI
= = × =

G
, because ( )1/ 2 pG = . 

For flat limiting surfaces, the problem becomes linear and the force of impact and approach of the 
center of mass of bodies varies according to the law of the trigonometric sine. 

Numerical results 
Consider the impact of two elastic bodies with masses 1 2 0.5 kgm m= =  with velocity 0 4 m/su = . 

The material of the bodies we take the rubber in which 6
1 2 4 10 PaE E= = × ; 1 2 0.5n n= = . Suppose that the 

boundary surfaces of rotation are of the fourth order ( 2n = ), moreover 3 310 mA -= . For received numeric 
data 5 0,82.405 10 m Nk - -= × × ; 0.8l = ; 849.069 NcP = ; 35.3 10 mcx -» × . To find the duration of the 
impact, let us consider that ( )4 / 9 1.99289G » ; ( )17 /18 1.03529G » . Then 32 4.018 10 ss ct t -= » × . 
Changes in the time of the force of impact and the approximation of mass centers are described by 
expressions: 

( )
5/4

05 9Sa ,1,
4 8c с

P t
t

P x
ué ùæ ö

= ×ê úç ÷
ê úè øë û

; ( ) 05 9Sa ,1,
4 8c с

x t
t

x x
uæ ö

= ×ç ÷
è ø

. (18) 

Therefore, for further calculations, we use the following approximation of the Ateb-sine in the first 
quarter of its period: 

( ) ( )
( )

2

2

5 9Sa , 1, 0.1999 1.0133 0.2 0.2213 0.2
4 8

1 1.6sin 0.5929

h

h h h

h

ì
ïïæ ö » + - - -íç ÷

è ø ï
- é I - ùï ë ûî

 when 
0 0,2;
0.2 0.8;
0.8 ,

h
h
h

£ <
£ £
< £ I

 

where 1.5164I » . 
The results of calculations are recorded in Table 1. 

Table 1 
The values of ( )P t  and ( )x t  calculated by the formulas (18) 

/ ct t  0 / ct xu  ( ) / cP t P  ( ) / cx t x  
0.125 0.1895 0.125 0.189 
0.250 0.3791 0.293 0.374 
0.375 0.5686 0.466 0.543 
0.500 0.7581 0.636 0.697 
0.625 0.9476 0.786 0.825 
0.750 1.1372 0.907 0.921 
0.875 1.3267 0.975 0.980 
1.000 1.5162 1.000 1.000 

In order to compare the numerical results in Table 2 records the values ( )P t  and ( )x t , obtained by 

the numerical computer integration of equation (4), under initial conditions: ( )с сP t P= ; ( ) 0сP t =& . These 

conditions are used due to the symmetry of the elastic impact with respect to time сt t= . 
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Table 2 
Results of numerical integration of equation (4) 

/ ct t  ( ) / cP t P  ( ) / cx t x  / ct t  ( ) / cP t P  ( ) / cx t x  

0.125 0.125 0.189 0.625 0.786 0.825 
0.250 0.291 0.373 0.750 0.902 0.921 
0.375 0.468 0.544 0.875 0.975 0.980 
0.500 0.637 0.698 1.000 1.000 1.000 

We have small differences in the corresponding results in Table 1 and Table 2, which confirms the 
plausibility of the analytical solutions obtained and the proposed approximation of the Ateb-sine. 

To analyze the influence of the order of the boundary surfaces on the impact characteristics, their 
calculation was performed when 3n = , with the preservation of numerical data. At closer contact of the 

bodies subjected to impact, 6 6/76.196 10 m Nk - -= × × ; 6 / 7l = ; 1403,304 NcP = ; 33,088 10 mcx -» × ; 
2,431 sst » . With increasing n  the maximum value of the impact force increased and the maximum 

convergence of the centers of mass decreased and the duration of the impact process decreased. 

Conclusions 
1. The generalized nonlinear differential force of the impact force has a compact analytical solution 

supplied by the Ateb-sine. 
2. This solution gives scan to the impact process over time and the ability to calculate its main 

characteristics. 
3. The use of the solution is greatly simplified by the presence of the Ateb-sine approximation by 

elementary functions. 
4. The numerical results that the formulas lead to are in good agreement with the results of the 

computer integration of the original differential equation. 
5. The theory under consideration applies only to elastic impact, which significantly limits the initial 

velocity of collisions of bodies. 
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