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Abstract: The problem of the elastic SH-wave diffraction 
from the semi-infinite interface defect in the rigid junction 
of the elastic layer and the half-space is solved. The defect is 
modeled by the impedance surface. The solution is obtained 
by the Wiener-Hopf method. The dependences of the 
scattered field on the structure parameters are presented in 
analytical form. Verifica¬tion of the obtained solution is 
presented.  

Index Terms: Elastic layer, impedance, rigid junction, 
defect, diffraction, normal wave, Wiener-Hopf technique. 

I. INTRODUCTION 
Prediction of the reliable work of the engineering 

constructions using layered junctions leads to the developing 
of the diagnostic methods. Information signals formed 
by the interaction of the elastic fields with material’s 
inhomogeneity to define interface defects are used. They 
have the complex dependencies on constructive, physical 
and mechanical parameters. It takes a lot of time and 
effort to carry out the natural experiments. In this case 
the mathematical modelling is an important stage of 
planning new technological means of diagnostic that 
elastic waves use. The theoretical basis of this modelling 
are the solutions of the diffraction problems of elastic 
waves from the defects in layers and its junctions. For 
simplifying, the materials layers are defined as elastic 
waveguides and the defects/cracks are modeled by the 
free stress surface [1–9]. General theory of wave pro-
pagation in the waveguide is given in [10–16]. It is based 
on using integral equation methods and direct numerical 
analysis of the boundary value problems [17–19]. But 
the analytical methods are crucial in this investigation as 
it allows to understand better the physical features of 
waves and defects interaction. One of the most important 
analytical approaches to this analysis is based on the 
usage of functional Wiener-Hopf equation [7, 11, 20]. It 
allows to obtain the solutions of the mixed boundary 
value problems in the wide frequency domain that are 
controlling to check the results given by the general 
approximate methods. 

One of the modern key diagnostic problem is a 
developing of the methods of collecting and data analysis 
to define the features that prevent the possible defects. 
The aim of the problem is to define the changing properties 
of the material that lead to the defect. The solutions of 
the mixed boundary value problems with impedance 
boundary conditions are used to describe the damage 

[21–24]. There was little research into these models. 
Therefore, the developing of the analytical methods of 
their analysis that give reliable results are important [6, 
25–28]. In this paper the diffraction problem of the elastic 
SH-wave from the semi-infinite impedance surface 
formed on the rigid junction of a layer with a half-space 
is solved exactly by the Wiener-Hopf technique. 

 

 

Fig. 1. Geometry of the problem 

The solution can be used for the estimation of 
changed condition of junctions by its changed impedance. 

II. STATEMENT OF THE PROBLEM 
Let us consider the elastic layer in the Cartesian 

coordinate system xOy as 

:{ ( , ), ( ,0), ( , )}P x y d z∈ −∞ ∞ ∈ − ∈ −∞ ∞  

that is joined with a half-space 0y > . 
Impedance half-plane  

:{ ( ,0), 0, ( , )}x y zΓ ∈ −∞ = ∈ −∞ ∞  

is a model of junction defect (Fig. 1). 
Let this structure is irradiated by the normal SH-

mode of layer P  that propagates in the negative direction 
of the axis x . The time factor is assumed to have 
harmonic variation i te ω−  and is suppressed through this 
paper. The problem is formulated in terms of the scalar-
valued function ( , )u u x y=  which is the nonzero compo-
nent of the displacement vector ( , )ze u x y≡u r , satisfies 
the Helmholtz equation 

 2 2 2( , ) ( , ) ( , ) 0x yu x y u x y k u x y∂ + ∂ + = , ( , )x y P∈ ,  (1) 

and boundary impedance condition type on Γ  

 ( , ) ( , ) 0tot tot
yu x y u x yη∂ + = , ( , )x y Γ∈ ,     (2) 
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where η  is an impedance ( Im 0η ≤  [24]), and describes 
the connection on the plane Γ  between the stress and 
displacement. The unknown function u  has to satisfy 
the stress-free boundary condition on the surface layer 

 ( , ) 0, , ( , )tot
zy yu x y y d xτ µ= ∂ = = − ∈ −∞ ∞      (3) 

and condition of the rigid junction with a half-space  

0, 0; (0, )totu y x= = ∈ ∞ .                     (4) 

Here tot incu u u= + , u  is the unknown diffracted field, 
incu  is the incident wave, 

( , ) sin( )j xinc
ju x y e yγ β= ,                         (5) 

(2 1) / 2j j dβ π= − , 1, 2,3...j = ; 2 2
j j kγ β= − , Re 0jγ > ; 

k k ik′ ′′= +  is the wave number ( , 0k k′ ′′ > , k k′ ′′>> ). 
It is necessary to find the solution of the diffraction 

problem (1)–(4) in the class of functions that satisfy the 
boundary absorption condition at infinity, if | |x → ∞  
and the Meixner condition as 

u δρ∼ , (1 )/u y δρ − −∂ ∂ ∼ , 

when 2 2 1/2[ ] 0x yρ = + → ,                  (6) 

where ρ  is the distance to the edge of the defect in the 
local coordinate system; 0 1/ 2δ< < . 

Note, the impedance η  in the boundary condition 
(2) is defined as a parameter, where the inverse value 

1/q η=  (admittance) defines the level of damage; its 
limit value shows the absence of damaging when 0q →  
and, if q → ∞  the crack is formed.  

III. THE PROBLEM SOLUTION 
Let introduce the unknown field by the Fourier integral  

1( , ) ( , )
2

i xu x y U y e d
+∞

−

−∞

= ∫ αα α
π

,                (7) 

where ( , ) ( ) ( )y yU y B e C eγ γα α α −= + , 2 2 1/2( )kγ α= − =  
2 2 1/2( )i k α= − − , Re 0γ ≥ ; function ( , )U yα  is 

regular in the stripe 0 0:α Π τ τ τ∈ − < <{ } , where 

0 1min Im , Re )kτ γ≤ { } , 1Re Re jγ γ< , if 1j > ; ( )B α , 

( )C α  are unknown functions. Applying the Jones’s 
method [11], we transform the boundary value problem 
(1)–(4) to the Wiener-Hopf equation as 

( )
( ) ( ,0) ( ,0) 0,

2 ( )
j

j

i M
M U U    

i
β α

α α α
π α γ

+ −′ + − =
−

 

α Π∈  (8) 

Here, 

01
( ,0) ( ,0)

2
i xdU u x e dxαα

π

−
−

−∞

= ∫                (9) 

0

1( ,0) ( ,0)
2

i x
yU u x e dxαα

π

∞
+′ = ∂∫ .       (10) 

The kernel function 

ch ( )( )
sh ( ) ch ( )

dM
d d d

γ
α

γ γ η γ
=

+
                    (11) 

is even and meromorphic; in the stripe Π  the function 
( )M α  is regular and outside Π  has simple zeros and poles. 

If | |α → ∞ , the asymptotic evaluation 1( ) ( )M Oα α −=  is 

correct; ( ,0)U α−  and ( ,0)U α+′  are unknown Fourier 
integrals of the displacement and stress fields on the 
surfaces Γ  and { 0, 0, ( , )}x y z> = ∈ −∞ ∞  respectively, 

dη η= . 
The asymptotic behavior of the unknown functions 

( ,0)U α+′  and ( ),0U α− , if | |α → ∞  in the regularity 
regions 0Reα τ> − , 0Reα τ<  respectively are defined 
according to the conditions (6) [20] as 

1 2( ,0) (| | )U Oα α+ −′ = / , | |α → ∞ , when 0α τ> − ; 
3 2( ,0) (| | )U Oα α− −= / , | |α → ∞ , when 0α τ< . 

Let us represent the Fourier transform of the displace-
ment field (7) as 

1/2(2 )
( , ) ( ,0) ( ,0)

( )

ch( ( )) .
sh ( )

j

j

i
U y U U

i

y d
d

π β
α α η α

α γ

γ
γ γ

−
+ −

×

×

 
′= − + − 

+
 (12) 

The even function (11) admits the factorization [11,20]: 

( ) ( ) ( )M M Mα α α+ −= ,                         (13) 

where the functions ( )M α+  and ( )M α−  are regular and 
do not have zeros and poles in the upper ( 0τ τ> − ) and 
lower ( 0τ τ< ) half-planes of the complex variable α  
respectively. Let us indicate nciγ±  and nsiγ±  the zeros 
and poles of the function ( )M α  as 

1 1 2 2 2 24 (2 1)nc d n k dγ π− −= − − , 1,2,...n = ,         (14) 

1 2 2 2( )ns ns nd z k dγ γ η −= = − , 1,2,...n = .       (15) 

Here nz  are the roots of the transcendental equation 

sin( ) cos( ) 0z z zη− = .                    (16) 
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Let us represent the numerator and denominator of the 
function (11) in the form of the infinite product [11] as 

1

1

1
( )

tg( ) 1

di
n

ncn
di
n

nsn

e
i

M

kd kd e
i

α
π

α
π

α
γ

α
αη
γ

∞ ±

=
± ∞ ±

=

 
± 

 =
 

− ± 
 

∏

∏
.         (17) 

Taking into account the asymptotic behavior of zeroes 
and poles of the function (11), we arrive at the asymptotic 
estimates of the functions (17) in the regularity regions 
as 1 2( ) (| | )M Oα α −

± = / , if | |α → ∞ . 
Applying the procedures of factorization and de-

composition [20] to the Wiener-Hopf equation (8), its 
solution is written as follows 

( )
( ,0) 1

( )2 ( )
j j

j

i M i
U

Mi

β γ
α

απ α γ
++

+

 
′ = − −  −  

,     (18) 

( ) ( )
( ,0)

2 ( )
j j

j

i M i M
U

i

β γ α
α

π α γ
+ −− =

−
.                  (19) 

IV.  FIELDS REPRESENTATION  
Substituting the expressions (18) and (19) in (12), 

we obtain the Fourier transform of the displacement 
field. In order to transform into coordinate area, we 
apply the inverse Fourier transformation. For this 
purpose we close the integration path into the upper 
and lower complex half-planes for 0x <  and for 0x >  
respectively, where Jordan’s lemma is satisfied. The 
scattered field for each of the regions is written as 
follows: 

1

2

( , ), 0,
( , )

( , ), 0.
u x y x

u x y
u x y x

>
=  <

                     (20) 

Here, 

1 1
1

(2 1)( , ) sin ,
2

qc x
jq

q

qu u x y R e y
d

γ π∞
−

=

 −
= =  

 
∑      (21) 

 

inc
2 2

1

( , ) ( , )

( )
cosqsx q

jq
q

u u x y u x y

y d
T e

d
γ ϕ∞

=

= = − +

+ 
+  

 
∑

,                   (22) 

where jqR , jqT  are coefficients of mode transformations 
on the defect tip in the domains 0x >  and 0x <  res-
pectively;  

( ) (2 1) ( )
,

2 ( )
j j qc

jq
qc j qc

M i q M i
R

d
πβ γ γ

γ γ γ
+ +−

=
+

1, 2, ,

1,2, .

q

j

= …

= …
    (23) 

1

cos

( )

( )
,

)( (1 )( tg( ))( )

j j
jq

q qs

qs q q q qs j

M i
T

d

i M i

β γ

ϕ γ

γ ϕ ϕ η ϕ γ γ

+

−
+

= ×

×
+ + −%

 
1,2, ,

1,2, .

q

j

= …

= …
.(24) 

Then applying the asymptomatic analysis we obtain 
that 3 2, ( )jq jqR T O q−= / , if q → ∞ ; therefore, if 0y =  

we arrive at 1 2( )u O x= /  and 1 2( )yu O x−∂ = / , when 
0x → . These estimations guarantee the uniform conver-

gence of the series (21), (22) and their derivatives in the 
domain { 0 0 ,x x−∞ < < < < +∞∪  0}d y− ≤ ≤ . If 0x →  
our field representation formulas (21), (22) satisfy the 
Meixner condition (6) and the boundary conditions on 
the layer faces y d= −  and 0y = . 

The formulas (21), (22) give the exact solution of the 
problem that satisfies all the necessary conditions. They can 
be used to determinate the diffracted displacement field for 
the arbitrary values of geometrical parameters of our 
structure and frequency. If 0η →  the expressions (21), 
(22) are transformed into the previous results in [7]. 

V. EIGEN MODES IN THE SURFACE 
IMPEDANCE AREA 

In order to analyse the wave propagation in our 
impedance waveguide let us determine the complex 
value roots of transcendental equation (16). There are 
several approaches to the solution of nonlinear trans-
cendental equations. These methods have local conver-
gences to the roots and the incorrect choice of the initial 
approximation leads to the divergences of the algorithm. 
In order to omit this limitation, we propose the algorithm 
which needs the additional information concerning the 
roots position on the complex area. 

For further convenience, we will introduce new 
notations for functions and domains as 

( ) sin( )f z z z= , ( ) cos( )g z zη= − , z x iy= + ,    (25) 

:{( 1/ 2)

( 1/ 2) },

K
n z n x

n y K

Ω π

π

= − ≤ ≤

≤ + ∧ ≤
 1,2,...,n = ∞ .   (26) 

The constant K  to be defined. Using the notations 
(25), let us rewrite the equation (16) as follows  

( ) ( ) 0f z g z+ = .     (27) 
Obviously, the function ( )f z  has a single root in 

each domain K
nΩ . As follows from the Rushe’s theorem 

[29], the condition | ( ) | | ( ) |f z g z>  on the boundary K
nΩ∂  

is sufficient for existence of the single root of the 
equation (16) in K

nΩ . The following example illustrates 
how it is satisfied. 

On the segments { ( 1/ 2) }x n y Kπ= ± ∧ ≤  is valid 
that 

1 2 2 2| ( ) | 2 (1 2 ) 4 ch( )f z n y yπ−= ± + , 
| ( ) | | || sh( ) |g z yη= . 

If | |K η≥ and | sch h ) |( ) (y y≥ , then  
| ( ) | ch( ) | | ch( ) | | sh( ) | ( ) |f z K y y y g zη η =≥ ≥ ≥ . 
Let us consider the inequality as  

cth( ) 0a x x− < .        (28) 
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Let us show that the constant 0C  exists for which 
the inequality (28) is valid for any 0a > , if 0x C> . 

Let us consider the function ( ) cth( )x a x xν = − . 
Then we obtain that 

0
lim ( )
x

xν
→

= +∞  and lim ( )
x

xν
→+∞

= −∞ , 

thus there  is at least one root of the equation ( ) 0xν =  
on the interval (0, )+∞ . The function ( )xν  is the straightly 
monotonically decreases on the interval (0, )+∞  because 

2( ) / sh ( ) 1 0d x dx a xν −= − − < . This guarantees the 
existence of a single root 0x x= . If 0x x>  inequality 
(28) is satisfied. It is sufficient to use 0 0C x= . In our 
segments (26) the following equalities are correct 

1/2 2 2| ( ) | 2 ( ) ch(2 ) cos(2 )f z K x K x−= + − , 
1/2| ( ) | 2 | | ch(2 ) cos(2 )K xg z η− +=  

Let K ′  is the root of the equation | | cth( ) 0x xη − = . 

Then, if ( )0 max | |,K K Kη ′> =  the inequalities  
1 2 2

1/2

2 ( ch(2 ) cos(2 )

2 ch(2 ) 1 sh( ) ch

| ( ) | )

| | | ( ) |,( )

K x K x

K K K K K

f z

g zη

−

−

+ − ≥

≥ − ≥ > ≥

=
 

are valid.  
Thus, the equation (27) has a single root in any 

K
n nΩ Ω⊂ , where lim K

n nK
Ω Ω

→∞
= . Therefore, in the 

complex half-plane Im 0z >  the equation (27) has an 

infinite number of roots { } 1n nz ∞
=

. The approximate 

expressions to determine the roots of the transcendental 
equation (16) , if | | 1η << are as  

1z η≈ , ( 1) / ( 1)nz n nπ η π≈ − + − , 1.n >      (29) 
We apply the Newton method for determine the 

roots of the equation (16) in the general case. The first 
10 roots for different values of the parameter η  are 
presented in Table 1. 

VI.  NUMERICAL ANALYSIS 
To verify the obtained results we check the 

satisfying the continuity conditions of the displacement 
and stress fields at the surface { 0, 0}x d y= − < <  In 
Fig. 2 dependencies of 1 2| | | (0 , ) (0 , ) |u u y u y∆ = + − −  and 

1| | | (0 , )x xu u y∆∂ = ∂ + − 2 (0 , ) |xu y∂ −  on dimensionless pa-
rameter /y d  are given. 

These dependencies for different impedance para-
meters η  and the dimensionless thickness/ frequencies 
kd  of the layers are shown in Fig. 2. The curves in 
Fig. 2, а, b and in Fig. 2, c, d correspond to the different 
impedance values 1.5η =  and 5η =  respectively with 

2kd =  (curves 1) and 4kd =  (curves 2). The five hundred 
terms of the series (21), (22) were used for calculation. 

 

 

 

 

 
 

Fig. 2. Verification of the continuity conditions 

The behavior of the curves in the figure show the 
excellent satisfaction of conditions of continuity of the 
displacement and stress fields in the internal domain 

a 
 

b 
 

c 
 

d 
 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Myron Voytko, Yaroslav Kulynych, Dozyslav Kuryliak 48 

{ 0, 0}x d y= − < < , except of the tip of the defect 
( 0, 0)x y= = , where the stress has the singularity (6). 

Table 1 

Values of the first ten roots  
of the characteristic equation 

0η =  1.5η =  5η =  0.1η = −  

0.000 0.988 1.313 -0.322i 
3.141 3.542 4.033 3.109 
6.283 6.509 6.909 6.267 
9.424 9.580 9.892 9.414 
12.566 12.684 12.935 12.558 
15.707 15.802 16.010 15.702 
18.849 18.929 19.105 18.844 
21.991 22.059 22.212 21.987 
25.132 25.192 25.327 25.129 
28.274 28.327 28.448 28.271 

 

1.5η = −  5η = −  0.15iη = −  3 0.15iη = −  

-1.622i -5.000i 0.281–0.267i 1.193–0.013i  
2.622 1.941 3.142–0.048i  3.809–0.022i  
6.0409 5.550 6.283–0.024i  6.704–0.018i  
9.264 8.914 9.425–0.016i  9.724–0.014i  
12.446 12.177 12.566–0.012i  12.797–0.011i  
15.612 15.394 15.708–0.010i  15.895–0.009i  
18.770 18.587 18.850–0.010i  19.006–0.008i  
21.923 21.765 21.991–0.007i  22.126–0.007i  
25.073 24.935 25.133–0.006i  25.251–0.006i  
28.221 28.098 28.274–0.005i  28.380–0.005i  

VII. CONCLUSION 
The solution of the diffraction problem of the 

elastic normal SH-wave from the tip of the defect in the 
rigid junction of a layer and a half-space is obtained. The 
elastic waveguide mode spectrum for domains with ideal 
(21) and impedance (22) boundaries is formed. Verifi-
cation of the obtained solution for different values of the 
frequency and impedance parameter is made. 
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