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1. Introduction

Investigation of the mechanisms of reaction-diffusion processes in systems of atoms adsorbed on metal
catalysts surface is one of the actual problems of modern mathematical modeling of surface phenom-
ena [1]. Mathematical models of such processes are constructed on the basis of reaction-diffusion equa-
tions, obtained phenomenologically or semi-phenomenologically using certain statistical approaches [2]
with mainly experimentally determined rates of adsorption, desorption, diffusion and chemical reac-
tions [3]. In particular, the processes of carbon monoxide (CO) oxidation on platinum (Pt) surface are
described using equations of chemical kinetics based on the ZGB model [4, 5].

In papers [1,6] a quantum-statistical approach was proposed for subsequent derivation of kinetic
equations for chemical reactions on metal surfaces. It allowed obtaining the reaction-diffusion equations
for kinetics of chemical reactions on metal surfaces in general form.

In this paper, a simplified mathematical model for describing CO oxidation processes on plat-
inum catalyst surface is obtained from the general equations of chemical kinetics for reaction-diffusion
processes of particles adsorbed on metal surfaces. It takes into account all the peculiarities of such
processes in the LH model. It is shown that proposed model generalizes the ZGB model. Within
the framework of the proposed model the kinetics of CO oxidation is investigated on the facets of Pt
crystallites, which are stable with respect to reconstruction.

2. Mathematical model of carbon monoxide oxidation

We consider a two-component mixture of A (CO) and B (Oz2) particle species that can chemically react
forming a product of reaction, the complex AB (CO2). We assume that chemical reaction of synthesis

A+B— AB (1)

is possible only when particles A and B are adsorbed on the catalyst surface (Langmuir-Hinshelwood
reaction (LH) [7]).
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Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure 159

If particles are adsorbed at certain places of a catalyst surface (hereinafter, these places will be
called adsorption sites) and after adsorption “meet” due to diffusion processes and participate in a
chemical reaction, it is convenient to introduce into consideration the functions: fa(a,t), fp(a,t),
Gy (a1, a9,t). They, respectively, describe the spatial distribution of particles A and B at an arbitrary
time point ¢ in the o nodes of adsorption sites and the correlation between ~, 4/ particles [1]. We assume

that
Zf’y((%t) :N’Yv (2)
[e%
where N, is the number of adsorbed particle species v = A, B;

Gaalag, a0, t) =0, Gppl(aj,as,t) =0, Gaplag # ag,t) = Gpalag # ag,t) =0. (3)

The criterion for a chemical reaction to occur is formation of a dimer in a separate a adsorption
center, namely the condition
gap(an = az,t) = fap(a1,t)da; 0, (4)

is fulfilled (dq,,a, is the Kronecker symbol [8]). In (4) gap(ai,,t) is an irreducible part of the
correlation function Gap(aq, ao,t) [1].

Under these assumptions, the system of equations describing reaction-diffusion dynamics for the
LH mechanism has the following form [1]:

% — %1: <KAA(a,a1) — ﬁAA(oz,oq)) Falar,t)
+ Z (KAB(a, ap) — ﬁAB(a,al)) felon,t) )
-3 P00, 00) Gap(or,0n.) 5 Faon oo )+ L (0.
W — %: <KBB(a,a1) — ﬁBB(oz,Oq)) fe(ai,t)
+ Z (KBA(a,al) — DBA(a,al)) Falon,t) ©)

+ Z PEip(a, a1, a2) (gpalar, as,t) + fp(oa, t) falaz,t) + Lp (fe(ast))

aq,02

W = — %2: (KAB(()(,OQ) - DAB(a7a2)> fA(a2’t)fB(a1’t)

- Z (KBA(Oé,Oéz) — Dpala, a2)> falon,t) fp(az,t) (7)

P45 (o, a1, a2, a3)gap (g, as, t).

az,03

The functions Ka4, Kpp, Kap, Kpa (it is natural to assume that Kpyq = K4p) describe the
influences of adsorption (interconnections with the catalyst surface) and chemical reaction on the
distribution of A or B particle species and indirect correlations between them. The operators IA)AW/
describe the effects of diffusion processes on the spatial distributions f, (y = A, B). The functions
P45, P ip describe the influences of chemical reactions on the spatial distributions of A or B particle
species and also on the reaction product distribution. The functionals L4(fa), Lp(fp) describe the
presence of external sources for generation of the corresponding particle specie.
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The process of CO oxidation on platinum-group catalyst surface has in addition certain peculiarities,
namely:

— the adsorption of oxygen atoms results from the break up of oxygen molecule (Og) near the catalyst’s
surface into two oxygen atoms (O), either of which adsorbs onto free adsorption site independently;

— the carbon monoxide (CO) molecule adsorbs without breaking up into atoms of carbon (C) and
oxygen (O);

— after adsorption the CO molecule can diffuse on the catalyst surface; adsorbed oxygen atoms do
not diffuse;

— the product of chemical reaction, the carbon dioxide molecule (COs3), desorbs from the surface
without breaking up into atoms, does not diffuse on the surface and does not form chemical bonds
with O atoms or CO molecules adsorbed onto catalyst surface;

— the oxygen atoms do not desorb from the catalyst surface, whereas CO and CO5 molecules can
desorb with different rates. The rate of reaction product (CO3) desorption is significantly higher
than that of CO.

This allows us to substitute in mathematical model (5)—(7): Dpg = Dag = Dpa =0 (Ais CO, Bis
O) and gAB(Oé,t) = fCOQ(a,t).

Under these conditions, the mathematical model (in a-representation, the lattice representation)
of reaction-diffusion equations for the kinetics of CO oxidation process can be given as follows:

W = Z (Kco co(a 041) - -DCO,CO(aa al)) fco(alat) + %: Kco,o(aa al)fo(aht)
+ Z K54 (@, 0n) feo(@1, 1) folaz, t) + Leo(feo), (8)
afO(a t ZKOO e} al)fo ag,t +ZKCOO « al)fco(ala )
ZKZS%C Oé aq fCO(ab )fo(a17t)+ 0(f0)7 (9)
Oalont) _ = 3 () e ) = 3RS e s ) e ). (10)

The system of equations (8)—(10) is a mathematical model (in lattice representation) for describing
the kinetics of carbon monoxide oxidation on the platinum-group catalyst surface. Similarly, to the
model (5)—(7), the model (8)—(10) is difficult for analysis and study of CO oxidation kinetics due to
unknown functions Keo co;s Koo, Keoor Kigos Keop and diffusion operator lA?C(,’CO.

For a further analysis of the system (8)— (10) a mathematical model of CO oxidation on the catalyst
surface, it is convenient to describe this process in terms of coverage functions: 6.,(R,t), 6,(R,t) and
Ocoy (R, t), where R = (X,Y) is the Cartesian coordinate of an arbitrary point of a catalyst surface.

This transition is carried out according to the scheme given in [1], namely, we put:
NZ ) £y (o, t) = / L, (R,t) dR, ~={CO,0,CO,}, (11)

where € is the catalyst surface region, S is the catalyst surface area. Then the system (8)—(10) can be
rewritten in terms of coverages as follows:

8900@& /Kco co R Rl)eco(Rly de +/Kcoo R Rl)e (Rb )de

_ / divg (Dwvco (R, R,) gradp, feo (Rl,t)> dR,
Q
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/ KIS (R, Ry) 0o (R, )00 (R, t) dRy + Leo (Beo(Ra, 1)), (12)

% /K (R, Ry) 0o(Ry,t dR1+/KOCO (R, R1) Oco (R1,t) dRy
+ /Q K% (R, Ry) Oco (R1,t) 0o (Ry,t) dRy + Lo (66 (R1,1)) (13)
890"287(;%"5) = /Q Kooy cop (R, R1) Oco, (R1,t) dRy — / K% (R, Ry) 0 (R1,t) 0o (R1,t) dRy. (14)

The system of equations (12)—(14) is a continuum mathematical model for describing reaction-
diffusion processes of carbon monoxide (CO) oxidation on a flat surface of metal catalyst (Pt) written
in term of coverages. The effects of the catalyst structure, oxidation processes and diffusion are
incorporated in functions Kcq co, Ko,cor Ko,cosr Keo,conr Keos,cop and diffusion coefficient ZA)CO,CO.

Solutions of this system for the given initial and boundary conditions on the coverages 0o, 0o, Oco,
specify the dynamics of CO oxidation chemical reaction when diffusion processes are present.

Since the system of equations (12)—(14) is a nonlocal nonlinear system, we perform the following
simplifications which take into account the specifics of course of carbon monoxide oxidation reaction.

We substitute in (12)—(14) that:

Keoco( R, R1) = (kadsorpmon kggsorption> (R — Ry), (15)
KoolR,Ry) = <kadsorpt10n kglesorption) (R~ Ry), (16)

Ko co(R, R1) = ko,co6(R — Ry), (17)
K)5(R, Ry) = KIS (R, Ry) = K ""-§(R — Ry), (18)
c02,c02(R7 R,) = kgggsorptlon O(R — Ry), (19)
Deo,co(R, R1) = Deo(R)-6(R — R1), (20)

Dco(R) is a local diffusion coefficient of CO molecule.
In expressions (15)—(20):

where 0(+) is the Dirac delta function [8].

These simplifications allow us to study model (12)—(14) of CO oxidation when the influence of
catalyst surface and the presence of adsorbed CO and O molecules are most possibly accounted. Indeed,
if coefficients kadsorptlon k‘adsorptlon f; Jesorption , ko desorption kcgisorptlon are taken from the experimental
data for the kinetics of CO 0X1dat10n on the Pt catalyst surface, the influences of catalyst and correlation
effects during adsorption and diffusion can be considered to be accounted for.

We consider now models for description of sources Lco(6co) and Lo(6,). These sources can be

modeled as follows:

Lco(eco) = ﬁcopcosgo (1 - 930) ) Lo(eo) = Hoposg (9*)2 . (21)

In (21) s%,, s2 are carbon monoxide and oxygen sticking coefficients (initial probabilities) [9,10]; peo
and p, are the partial pressures of the corresponding species, which are specified by experimental con-
ditions; 6* is the coverage of catalyst surface free sites. The stoichiometric equilibrium conditions [11]
require fulfillment of equality:

Oco + 0o + Oco, +0° = 1. (22)
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Therefore we will henceforth determine the number of free active sites 6* from condition (22):
0" =1—0c0 — 0o — Oco,.

If we substitute into system (12)-(14) expressions (15)-(20) instead of functions Kco,co, Ko,co;
Ko coss Keoconr Keos,cors Deoco and use the known identity [8]:

/ §(R)f(R)dR = — / 5(R)gradp f(R) dR (23)
Q Q

we obtain a simplified mathematical model for CO oxidation, namely:

aecoa(fa t) _ pcosgol‘ico (1 _ 920(R7 t)) . kreaction 900(‘R7 t) 90(R7 t) _ kggsorptiongco(R7 t)
+ diVR (DCO(R) gradR GCO(R7 t)) ) (24)
w = posg/{o (1 - OCO(Ry t) - 90(R7 t) - 0002 (R, t))2 - kreactioneco(R, t) 90(R7 t)7 (25)
aeCO R? 3 reaction esorption
% — prectiong (R ) 6 (R, £) — KISomtiong (R ). (26)

The system (24)—(26) is a generalization of the one-dimensional Ziff-Gulari-Barshad (ZGB) model
[12] for CO oxidation on the metal catalyst surface. It takes into account both the two-dimensionality
of the catalyst surface and the finiteness of oxidation product CO2 desorption.

3. Investigation of the process of carbon monoxide oxidation on platinum [111] catalyst
surface

We consider the model (24)—(26) of catalytic CO oxidation reaction on Pt(111) surface, which is stable
in (1x1) structure and does not reconstruct into new configurations under the influence of adsorbed
CO [3]. The catalyst surface is assumed to be flat with a given Cartesian coordinate system XOY. We
introduce new variables in the equations (24)—(26):

u =0, v=~0o,

and take into account that desorption of reaction product (CO3) can be considered instantaneous when
modeling CO oxidation on the Pt-catalyst surface [13]. Then the equations (24)—(26) are rewritten in
the new variables:

ou 0 u \? 0%u 0%u

— = pukuSy | 1 — —kuw —keu+ Dy— + Dy—= 27

ot PuluSy ( (usat> 1 U + xaw2 + yay27 ( )

ov 0 u v \?

— = DPykuSy | 1 — — — kjuv. 28

ot Pufivsy ( Usat 'Usat> ! ( )
Here p,,, p, are the partial pressures of CO and Os, respectively; x,, %, are the impingement rates; s9, s9

are the sticking coefficients (initial probabilities); usqt, Vsqt refer to the maximum coverages, namely the
saturation coverages; D,, D, are CO diffusion coefficients in OX and OY -axis directions, respectively.
Coefficients k1, ko, which characterize the rates of reaction and desorption of CO molecule from the
catalyst surface, are temperature 7' dependent and are determined by the Arrhenius equations [14]:

E;
. — . g 0 — v ) —
ki = ki(T) = k; exp < T) , i=1,2. (29)
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Here k‘? are the temperature independent coefficients; E; are the activation energies of reaction (when
i =1) and CO desorption (when i = 2); R is the universal gas constant [15].
The equations (27)—-(28) are transformed into dimensionless form by substituting:

U= UsqtU, V=05V, =0T, y=Ily, t= tcfa

where
Vsat

te = .

© Pukus

The parameter [y is chosen according to experimental data for the size of Pt-crystal [16], lp ~ 1073 cm.
In dimensionless form the equations (27)—(28) compose the proposed mathematical model for re-

action of CO oxidation on Pt surface:

%—g - Z—‘Z (1= U®) = k1osUV — kol + D, (?;—5 + DO?;—QZ)
=P (U, V)+D, @2_5 +D08;_g§) : (30)
86—‘; = PO (1= U = V)? = kustUV = Q (U, V).
Here: Dykyt ~ D,t D ~
Py = U:t D, = z%c’ DOZD—z, ki = kite, i=1,2. (31)

The system (30) is a system of two nonlinear partial differential equations, so its solution will be
searched numerically. Parameter values used in numerical calculations are given in Tabl.1 [17-22].

Table 1. Parameters of mathematical model for CO oxidation on Pt(111) surface.

CO Partial pressure Dy, ~ 107> Torr
Impingement rate Ky 4.2:10° s~ 1. Torr !
Sticking coefficient | s° 0.84

Saturation coverage | ugq | 0.5

Diffusion coefficient | D, | 1.2:1077 cm?.s™!
(0] Partial pressure Dy ~ 107> Torr
Impingement rate Ky 7.8:10° s~1.Torr—*
Sticking coefficient | s? 0.025

Saturation coverage | vgqr | 0.25

Rates | Reaction k) | 4.7-106 571

F 13 keal-mol ™!
Desorption of CO k9 1.25-101% 71

FEs 34.9 kcal-mol™*

Before conducting a complete analysis of the model (30) first we consider the issue of existence and
stability of steady-state solutions (U?, V*) for a system where diffusion processes are absent, namely:

oU ov
S =POV), - =QUV). (32)

These solutions satisfy the system of algebraic equations:

PU*, V) =0, QU V) =0. (33)
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The results of numerical analysis show that there exists a real steady-state solution (U*,V*®) of
system (32) for arbitrary values of partial pressures p,, p, ~ 107 Torr and: 0 < U* < 1,0 < VS < 1.
The graphic representation of (U?®, V*®) as a function of partial pressure p,, is given in Fig. 1 for certain
values of p, = 20.1:107° Torr and T = 540K. It can be seen that at pressure p, = 5.94-107% Torr a
transition occurs from a state with high reactivity when adsorbed CO molecules and oxygen atoms are
located on the surface and enter into chemical reaction of oxidation, to a state with low reactivity when
almost entire surface of the catalyst is covered with adsorbed CO, which disables oxidation reaction.

To analyze the stability of solu-
! tions (U®,V*®) of system (32), time-
dependent small deviations from the
steady states dU (i), oV (f) are intro-
duced:

U=U*+38U(t), V=V+45V({)

Then the linearized system (32) near
(U*,V?*) looks as follows:

d T T
y Slov sv|T =5 av|T,
— (34)
0 0.5 1 15 2 25 3 3.5 4 45 5
pu [Tort] «10-5 Where
P, P/
Fig. 1. Steady-state solution of system (32) as a function of partial M = H U |4 (35)
pressure p,, for p, = 20.1-10~5 Torr. Qy Qv (Us,V*)

is the Jacobian matrix [8| for the sys-
tem of functions (32), where all partial derivatives are calculated at a stationary point (U?, V®).
We look for the solutions (6U, 6V') of the system (34) in a form:

SU = Cr1eMt, §V = Cpe?t (36)

where \; are the eigenvalues of Jacobian matrix (35), C; are the constants (i = 1,2).
The calculation of eigenvalues A reduces to solving equation:

/o /
det‘PU, A ,PV =0, (37)
QU QV - A (US,VS)
or the following square equation:
M — Mtr M + det M = 0, (38)

where
trM =P, +Qy, detM = P;Qy — P,Qy

are the trace and determinant of matrix M, respectively.
The steady-state solutions (U?®, V*) are stable when Re(A12) < 0. Since the discriminant of equation
(38) is non-negative for the given model parameters:

D=tr> M —4det M = (P} — Q})° + 4PL,Qy; > 0, (39)

the roots

A2 = (trM +V/tr2 M — 4det M) . (40)

DO | =
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are real and have negative values if

det M > 0. (41)

The condition (41) is the condition for stability of steady-state solutions (U®,V?®) of the system (32).
After numerical analysis of the condition (41) for the given model parameters, we find that the system
(32) is stable for arbitrary partial pressures py, p, ~ 107 Torr.

Thus, the region of auto-oscillatory mode arising from Hopf instability [23] does not exist for
model (30). Therefore, only bistable behavior of catalytic reaction will be observed. That is the
system moves from one stable state with high catalytic activity to another one with low catalytic
activity.

To investigate the influence of spatial effects on the model stability, we consider system (30) which
takes into account diffusion processes. The small deviations from the steady states (U®,V*) are intro-
duced:

U=U*+6U(,9,t), V=V*+6V(2,7,1),
where 06U (%,7,t), 6V (Z,§,1) are small perturbations dependent on &, §j coordinates and time ¢. The
linearized system (30) near (U®,V?®) is written as:

0 T T = [0 0? T
O v av|T=m-fov ovT+ b, (W*D()a—gz> lsu o, (42)
where M is the Jacobian matrix defined by (35).
We look for the solutions (6U, 6V') of the system (42) in a form:
SU = 016)\1£+ikR, SV = 026)\2t~+ik:R7 (43)

where \;, i = 1,2 are the eigenvalues for temporal growth, k = (k;;k,) are the wavenumbers (the
eigenvalues of the spatial problem (42)).
Then the problem of stability analysis reduces to finding the eigenvalues A, k,, k, from equation:

N o 2 2 /
det ‘ P/ — A Dw/(k:x + Dok?) /PV o, (44)
QU QV - )\ (US,VS)
or B ~
A%+ A (Dx(kfc + Dok?) — tr M> — D, (k2 + Dok2)Q', + det M =0, (45)

where all partial derivatives are calculated at a stationary point (U*, V*®).
The solutions of the equation (45) are written as

1 ~
Nz =3 <trM — Do (k2 + Dok2) + \/Dl) :
where D; is the discriminant of the equation (45):
Dy = D+ Dy (k2 + Dok2) { Do (k2 + Dok?) + 2(Q% — i)}

Here D is the discriminant (39).

Obviously, for the given model parameters: Re(A12) < 0 with arbitrary k,, k, # 0. This means that
steady-state solutions (U®,V*®) of the system (30) are stable for the arbitrary k,,k, # 0. Therefore,
the conditions for Turing bifurcation [24] to occur are not satisfied; i.e., the system (30) remains stable
when diffusion effects are present.

The results of numerical analysis of the two-dimensional mathematical model (30) for CO oxidation
on Pt(111) surface are presented in Figs. 2-3. These figures show that at pressures p, = 4.5-1076 Torr,
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M0.3
0.3 04
0.29
1
= 0.28
ii 0.28 0.3
N\
N
0.26 A\
0 027 0.25
0.2
0.5 0.26
U “0.15

- 1 5

x 0 ¢ [S]

Fig. 2. Dependency of CO U(%,7,t) and O V (&, §,1) surface coverages for g—z =10,lp=103cm, T = 540K,
Pu = 4.5:1076 Torr, p, = 20.1-107° Torr, § = 0.4.
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Fig. 3. Dependency of CO U(Z,7,t) and O V(&,7,t) surface coverages for g—y =10,lp=10"3cm, T = 540K,
Do = 9.95-1076 Torr, p, = 20.1:10~° Torr, § = 0.4.

py = 20.1-107° Torr there are adsorbed CO molecules and O atoms on the catalyst surface, therefore,
we observe a state with high reactivity and COy formation. On the contrary, at p, = 9.95-107% Torr,
Py = 20.1-107° Torr adsorbed CO blocks oxygen adsorption, so the surface coverage of O falls and the
system moves to a state with low reactivity. The auto-oscillatory mode for model (30) is not observed.

Such a bistable behavior of CO oxidation reaction on Pt(111) surface, when the system moves
from a stable state with high catalytic activity to another stable state with low catalytic activity, is
consistent with experimental findings [3, 25].

Transition to the stationary mode is accompanied by decrease in reaction yield. So, in practice,
when constructing the catalyst surface a crystallite with (110) working facet should be used.

4. Conclusions

A mathematical model of reaction-diffusion processes is substantiated and built for the Langmuir-
Hinshelwood mechanism (LH) on the surface of metal catalyst. It takes into account the peculiarities
of occurrence of oxidation reactions on platinum surface. Mathematical modeling of CO oxidation
process was carried out for Pt(111) surface, of which, unlike (110) facet, the structural phase transition
is not characteristic. Stability regions of reaction and conditions for Hopf and Turing instabilities
to arise were investigated. It was established that the system is stable at partial pressures p, and
py ~ 1072 Torr. Therefore, the region of auto-oscillatory mode does not exist for the given model
parameters. The qualitative agreement of results for numerical modeling with experimental data for
CO oxidation reaction on Pt(111) was obtained.
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MaTemaTnyHa Mogenb okcupgauii 4agHoOro rasy: BMJMB CTPYKTYypuU
noBepxHi kaTanisatopa

KocTpobiitI1., Puxal., Mapkosuua B.

Havionarvruti ynisepcumem “JIvsiscvra nosimexnixa’,
eya. C. Bandepu, 12, Jlveis, 79013, Yxpaina

3aponoHOBAHO OOI'PYHTOBAHY MATEMATUIHY MOJIEJb OIUCY PEAKIHIHHO-Tudy3ifHIX mTpo-
1eciB IBOCOPTHOI CyMiIni, aJcopboBaHUX Ha MOBEPXHI KaTai3aTopa YacTuHOK. [lokazaHo,
110 JUist peakTiii okucHeHHst aqaoro ra3y (CO) 3anponoHoBaHa MOJIENb Y3arajlbHIOE OTHO-
BuMipHy Mojesb ZGB. dociinkeno kineruky okucHenHst CO Ha CTIRKUX 111010 11epeby 108U
rpaHsax Kpucrasa wiarnan (Pt).
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