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Introduction

A great many mathematical papers are devoted to
boundary problems for elliptic equations and their sys-
tems in unbounded domains (see, for instance, [1]—[7]
and the literature cited therein). These researches are
mainly directed to prove the existence and uniqueness
of the solutions of corresponding problems under some
growth conditions on the solution and initial data or
without them at infinity.

In this paper we investigate the well-posedness of
nonlinear elliptic systems of equations generalizing the
model equation

—Z(lum P @)+ @ () = f)
(1

given in unbounded domain €2 with corresponding in-
dices of nonlinearity p; > 1 (i = 0,n).

Here we consider the case when boundary problems
for such equations and their systems have unique solu-
tion without restrictions on it’s behaviour and increa-
sing of initial data at infinity. At first such result was
obtained in 1984 by H. Brezis in [1] for the elliptic equa-
tion

—Au+ [ufPu = fz), p>2

given in the whole space R™. Later on new types of
equations with constant indices of nonlinearity keeping
such property were found in works [2]—[6]. In particu-
lar, in work [6] it is established the uniquely solvability of
boundary problems for equations generalizing (1) with
1<p; <2,pg>2.

In the recent years the boundary problems for elliptic
equations and their systems with nonstandard growth
conditions have aroused increasing interest. Such prob-
lems were recently obtained in the hydromechanics of
quasi-Newton fluids ([8]). In paper [7] authors conside-

red equations of this type extending (1) with p; depend-
ing on x € . This work is continuation of investiga-
tions made in [7] for the systems of elliptic equations
having polynomial nonlinearities that vary at x and are
different with respect to different derivatives. We con-
sider mixed boundary conditions: the Dirichlet boun-
dary condition on one part of the boundary and the
Neumann boundary condition on the other part. In ad-
dition to one-valued solvability of the problem in class
of functions with arbitrary behaviour at infinity we con-
sider the question of continuous dependence of the so-
lution on initial data.

I. Preliminaries

We denote by RF, where k € N a linear space
consisted of elements x = (21, .. ), where xz; € R
(i = 1,k), with norm |z| = /27 + —l—xk For func-
tion v(z), z € D C R¥, we denote by 11|D its restriction
to aset D C D.

Let n > 2 be a natural number, €2 be an unbounded

domain in R"™ with piece regular boundary & 09,

I' = Ty T, where I'y, I'y are open sets on 99 (one
of them can be empty), I'y (12 = &; v is an unit exte-
rior normal vector to 0€). We will suppose without loss
of generality that 0 € Q. For all R > 0 we denote by

Qg the connected component of the set QN{z : |z| < R}

such that 0 € Qg. Let Sp = 0QrNNQ, 'y RdfkaﬂaﬂR,

ke {1,2}, R>0.
Let C1(Q) be the subspace of the space C1(2) con-

sisted of functions with bounded support in Q. Put
@ )dCf{ € CHQ) : v > 0 on Q}. Denote by
C}(9,T) the subspace of C1(Q) consisting of elements
having zero value in the neighbourhood of T';.

Let r € Lo (92) be such function that r(x) > 1 for
a.e. v € Q. On the space C(Qg), where R > 0 is an
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arbitrary number, we introduce the norm

def .
||v||LT( o S0 > 02 (o)) < 1),
)r@ 4.

flv

The COmpletIOH of C(Qr) by this norm is denoted
by L,(.y(Q2r) and is called the general Lebesgue space.
It is obvious that the set L, .)(f2g) is a linear sub-
space of the space L1(Qg). We define L, (.) 10.(Q2) be
the closure of the space of continuous functions on Q
in the topology generated by the system of seminorms:
|-z, @n), £>0.

Let N be a given natural number. When X is a Ba-
nach (topological) space, (X)" denotes the Cartesian
product of X with the corresponding topology and its
elements can be written as the column vectors.

where p, g (v

Define P be a set of matrix functions p =
= (P0,P1,---,Pn), Pk = colon(p1,...,prn) (k = 0,n),
such that p;; € Loo(R) and p;;(xz) > 1 (i =0,n, j =
= 1,N) for a.e. = € Q. For a function p € P by p* =
= PPhePh)s Bp = colon(piy,...,Piy)
(k = 0,n), denote the matrix function such that
1/pij(z) + 1/pj(z) = 1 (i = 0,n, j = 1,N) for a.e.
x € Q (it is obvious that p* € P).

For all R > 0 define W, (Qr) be the Banach space

be

obtained as the completion of the space (C*(Qg))
the norm

def
||UHW1( (Qr) = Z Z 10; UJ||L,, 5 (QR)

Jj=1li=

where 81- = 8/3mi (i=1,n), 80v et . Tt is obvious that
WZ}(_)(QR) is a subspace of the space {v(z), z € Qp :
djvj € Ly, ,(1(Qr) (i=0,n, j=1,N)}.

On the space (C§ (ﬁ,Fl)))N consider a locally con-
vex linear topology generated by the system of semi-

norms: || - ||W1( NCSE R > 0 (see [9]), and let
Wp( )1oc(QvF1) Wy )loc(ﬁ) be the completion of

(ce@r)”, (cr@)”

A sequence {v;}72, is convergent to v in W), 1,.(9) if

respectively in this topology.

||v;c —vHW1 @) O for all R > 0. Note that ’U|QR €
(Qg) for all R > 0 provided v € W! (), 10e (D).

II. The statement of the problem and

main results

Let p € P. We denote by A, the set of function ar-
rays {A;; : i =0,n,j = 1,N} = {4;;} such that for
every i € {1,...,n}, j € {1,..., N} function A;; is de-
fined on Q x R, for every j € {1,..., N} function Ay, is
defined on Q x RY, and the following conditions hold

1) for a.e. z € Q functions A4;(z,-) : R — R,
Agj(z,?) : RY — R (i = I,n, j = 1,N) are con-
tinuous and for every ¢ € R and n € RY functions
A”(,f) Q) — R, Aoj(',n) Q0 —-R (Z :1,771, j = 1,7N)
are measurable (the Caratheodory condition);

1) A;j(2,0) =0 (i =0,n, j=1,N) fora.e. z €

2) for a.e. x € Q, Vn,77 € RY the inequalities hold

N
|A0j x, 77 Z |nk‘Pok(m)/pg_j(x)+hj(x)’ j= N
al N
Z(Aoj(w, n)—Ao;(z,1)) (nj—1n;) = Ko Z I —i7; Pos ()
j=1 =
where Ky is some positive constant, hj, €

Loo,loc(Q)7 hj € Lpgj(‘),loc(Q) (] = ]-aN,k = 17N);

3) for all i € {1,...,n}, j € {1,...,N} and for
a.e. = € Q there exists 0A4;;(x, §)/0¢, £ # 0, and
V¢ € R, € # 0 they satisfy the following inequalities

8A1](x §)
< o€ =

pij(z)—2
b)

pij(z)—2

< Kij(1+ [a))75 ¢

Kij[€

where K;; > 0, Kij > 0, 055 = 0 are some positive
constants.

Let IF,, for all p € P denote the set of matrix func-
tions (Fij):(F()y Fl, ey Fn)7 sz CO]EH(Fkl, PN ;FkN)
(k=0,n), such that I € Lp;‘j(-),loc(Q) (i =0,n,5 =
1,N). On F, introduce the topology of Cartesian prod-
uct of locally convex spaces Ly: (.)10c(€2) (i = 0,n,
j=T1,N).

Note that real numbers r, 7, (k € N) and ¢ > 1
satisfy the inequality (|rg|9=2ry — [r|9727)(rx —7) > 0
(k € N) and we have (|rg|?2r, — 7|77 27) (1), — T)k—> 0

[e]
if and only if Tk 2T Thus on the linear space W
— 00

117( 9 loc (,T'1) we can introduce such concept of conver-
gence that the sequence of elements {vj}7° | is conver-

gent to v if

n

N
/{ZZ(@Uﬂm;(z)—zaﬂ? _ ‘8ivj‘Pij(Z')—28i,Uj) %

G d=1i=1

N
k ;
— 0ivj) + Z [of = vj\p”(w)}dfkj;o 0
J=1
for all R > 0. This space with such concept of conver-
gence we denote by U,.

X (81-1);-“

Now formulate the investigated problem. Let | PcCP
andA CAP,]F C]Fp7Up c forpGIP’ The
F,, U, :pe ]P’) (System of equa-
tions in Anisotropic space) is to find for every p € P
and {A”} S Igp, (sz) S Fp the set SSA({A”}, (Fzg))
(Solutions of System of equations in Anisotropic space)
of functions u € [[NJ such that the equality

/Z ZAU x, 07u;) Ovj + Agj(x, u)vj}dx—

Jj=1 i=1

main problem SA(

[Ene

j=1 i=0

x) Ovjdx (2)

holds for all v EW;(,) (Q,T), supp v is a bounded

set.

, loc
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Boundary problems for elliptic systems with anisotropic nonlinearity

Remark 1. It is seen from the statement of the inves-
tigated problem that the restricting condition 1’) is not
essential. Otherwise we can introduce new functions

Ay, €)% Ay (2, 6)— Ay (,0),

for a.e. z € Q (i = 0,n), and rewrite the identity (2)

with gj, E instead of A;, F; respectively, where func-
tions A;(z,0) =0 (i = 0,n) for a.e. z € Q.

def

Fi(x) < Fi(z)—Ai(z,0)

Hereinafter we will use the following concepts. We’ll
say that SA (A, F,, U, : p € P) is a solvable (unique,
uniquely solvable) problem if for every p € I@ arbitrary
{A;;} € A and (Fj;) € IF the set SSA({4;;}, (Fi;))
is non- empty (contains at most one element, has exactly
one element).

We'll say that SA(&I,,INFP,@ p € @) s a weakly
well-posed problem, if it is umquely solvable and for all
p € P, arbltrary elements {A;;} € Ap, (Fij) € F and

RSt C]F such that (Fk) — (F;;) inF),
we have u* e win U, , where u* € SSA({AU} (F; )),

k€N, ue SSA({A;}, (Fi))).

It is obvious that problem SA (A IF TUp pE ]P’)
can be formally interpreted as the boundary value prob-
lem

sequence {(F}

_Zd

ij(z,0u5) + Agj(z,u) =

:—Zazej(i), SIJGQ,j:l,N,
=0
Ou; (x)
8Z/A

uj(z) =0, z €Ty, =0, zely, j=1,N,

where {A;} € Ay, (Fy) € Fp Ouj(a)/ova™=
Y Aiy(@, ) vilw), w € T, B
We search for the sets P and {Ap, IFp, U ip € IP’}

such that problem SA(AP, Fp, Up pE ]P’) is uniquely
solvable or weakly well-posed. Note that we don’t want
to put any restrictions on increasing of the elements of
the sets F,, U, (p € P) at infinity.

Here we make the following choice of the requisite
sets. Let P* be a set of elements p € P such that

1 def
poj = ebbbuppoj( ) < o0,

_ def .
= essinfpgi(x) > 2
Po; = essinfpo;(z) 2 2, s

_def . def
p;; = essinfp;(z) > 1, pi- = esssuppi;(z) < 2,
J EQ J zEQ

Cdef . def
q; = essinf g;;(x) > n, qa; = esssup gij(x) < 400,
J zeQ J zeN

where ql-j(x)dif% reQ(i=1n,j=1N).
For all p € P* define A as the set of function arrays
{A;;} € A, satistying the additional condition
4) constants o1j,...,0,; (j =1, N) in condition 3)

+ -
a; +a]Z, <0(i=T,n, j=1,N).

are such that n —

& def = =
Let Fp = Lp(’;l(-),loc(ﬂ) X +-e X LPSN(')-,IOC(Q)'

Theorem 1. The following statements are valid.
1) The problem SA(A F,, U, :p € P* ) is uniquely
solvable and for all p € IP* {A”} € Ay, (Fy) €Ty
the (unique) function u ESSA({A”} (F; )) for every
Ry >0, R>1, Ry < R, satisfies the estimate

[ 33z )

pij (@) + |u ( )‘pOJ(I)}dSC S

Qny j=1i=1
R® N n
< ——"_|C,R"+C z)[Pi @) g

e GEAT PO LT

Qp J=11=0
+C3 / Zm )[Pos z>d4 (3)

g I=1
ar;

where y= mln{qw 1 < < 1<j<N}
s > max{q” 1<i<n1<j< N} Cy,Cy,C3 are
some positive constants depending only on n, s, p;;, pw
(i=0m,j=LN),a;, ¢ (i=Tn j=LN).

2) The problem SA(AZ, Fr, Up : p € IP*) is weakly
well-posed and its solution satisfies the estimate (3) with
corresponding simplification.

— 0y P

III. Auxiliary statements

It is easy to establish that following Lemma is valid
(see [10], p. 312).

Lemma 1. Let 1 ess inf r(z)>1,

r€Loo (), 7~ ssi

r+d§fesssupr(x) < +oo. Then for every function

e
v € Lp(.),10c(Q2) and number R > 0 the following in-
equalities hold

1

min{ (pr, 2 (0) 7, (prn ()7 } < lolln,, (0m <

1

< max{(pr,R(”)) » (or.r(v ))ﬁ}’

. — +
mind 017, 1015n  n) b < Pra(®) <
Remark 2. For all a > 0,b > 0,e > 0,v > 1 Young’s

inequality ([9]): ab < & + 2 v* = Lo,
inequality

< max{|lvll7, ()

implies the

ab<ea” + 77 b7 4)

Remark 3. Young’s inequality ([9]): abc < %"‘
+82 4+ % a>0,b>0,c>0,11 > 1,vy >1uv3 > 1,
1 1 1 _ . . . . .

o7 T35 T 5; = 1, simply implies the inequality

abc<ea™ + eb”? 4 7B 2> 0. (5)

MATHEMATICS
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Lemma 2. Let {A;;} € A, forp e P*. For a.e.
x € Q and arbitrary &1, 2 € R the following inequalities
are valid

(Aij(z,61) — Aij(2,62)) (61 — &2) >

> Kj; (1& Pi(®=2¢, & pij(m)f?ﬁz) (&1-&), (6)
(Aij(xvgl) - A17($7§2))(€1 - §2) <

S KH(+|2]) 79 |6 — &P @), (7)

where K K+ (i=1,n, j =1,N) are some positive
constants.
O Proof. The inequalities (6), (7) are proved in

[7. m

Lemma 3. Let R, > 1, {A;} € Ay, Fiy €
Lys()(Qr,) (i = I,n, j = 1,N) for some p € P*
and for every I € {1,2} functions Féj € Lpaj(')(QR*)

(j=1,N), u € W;(i)(QR*) are such that u! = 0 on
FI,R* and
N n
/ Z{ZA”(JJ dyul ) 0ivj + Agj(x, ul)vj}dm_
Qp, i=1 i=1

- /i{zn:F 8v3+Féj(x)vj}dw (8)

Q. J=1 =1

*

C)

for arbitrary v € Wl( )(QR )y VIry g uSe, =

Then for every Ry > 0,R > 1, Ry < R < R,, the
inequality

[ (S
Qp, =1 =1

P29} — |0

pij(T) *237:“?) x

R S
><(aiujl,787;u?)+|u314(x)fu?(x)‘z;oj(x)}dx < <R — Ro) X

X @R“*MC;,/Z\FOJ

Qg J=1

(@) ] (9)

holds, where s and ~ are the same as in the Theorem
1; Cy, C5 are positive constants which do not depend on
u', Fl; (1=1,2,j=1,N), F;; (i=1,n,j=1,N).

Ajj(x, 8u ”(x,aiu?))aiwj ¢+

[ 3

Or j=1 i=1

+(A0j (CC, Ul) _ Aoj (.’t, 7_1,2)) w; Cs}dx =

/Z (Fo; — F&)w; ¢* da—

Qg J=1
)—Aij (@, 0u3)) w; ¢~ 9 ¢ d .

(11)

Let’s estimate each term of (11). Using inequality

(4), we deduce

N
/Z(FOJ F3)w; ¢* dx<7)1/2|w ()P (5 d ot

Qr =1
N

/Z|F0]

+Co(m F3(x)Pou@ ¢ da,  (12)

where 7 is an arbitrary number out of (0;1); Cs(n1) =
_ 1-pg,
=
Using the same arguments as in [7] (see p.77), for

s>max{qi‘§:1§i§n,1§j§N} we obtain

N n
—s/ZZ(Alj(x,(“)zujl)—A”(x,aluf))wj 4—5—1 8Z<d$§

n j=11i=1

n

N
< SNz / Z{Z(A” (JZ, 6111]1) — Aij (.23, 6{&3)) 8iwj+

G J=1 i=1

+
Q/j
n+s—q; +<m —

N n
g (@) } ¢ d w5y ZZ

(13)
where 7o € (0;1) is an arbitrary number; Cr(72) is a
positive constant.

From (11), relying on condition 2), (12) and (13),
with sufficiently small values 77 and 7, we get

O Proof. Pick somehow and fix numbers Ry, R /Z Az, 05u; ) Ajj (x,@iu?))aiwj—l—
provided that 0 < Ry < R < R,, R > 1. Subtracting Gp J=1i= 1
integral equalities derived from (8) for I =1 and | = 2
and putting in the obtained equality (see [2], p. 220) N n B L
v = w(®, where w iyl — u?, ij(mﬂpoj(x)} ¢Cdw < Cy Z ZRn+S_qij+Uijqij/pij+
j=1i=1
1/ p2 2
=(R* — |x]7), |x| <R,
C(m):{ ! 0 o }JS} >R (10) S 1 2 Po; (@) s
) = +Co Z |Foj () — Foj(@)[Post™ ¢* da, (14)
=1
s > 1 is sufficiently large number (value of s will be o !
defined more precisely later), we derive the equality where Cg, Cy are some positive constants.
8 MATEMATUKA
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Note that 0 < ((z) < R when x € R"™ and ((x) >
R— Ry when |z| < Ry, where Ry € (0, R) is any number.
Taking into account stated above and, in particular, that
R > 1, in virtue of inequality (6) from (14) we conclude

N n
[ {00} — s 20.)x
Q =1 =1
Ro

x (Oyul

§ = 0ud) + [uj (@) — u(@) P fda <

-0
R N n

< ( ) Cio
Fm) 052
+C11 / Z|FO Y

Qp J=1

— + —
R"_qij+gijqij/Pij+

)= FP2@)Po@da),  (15)

where C1q, C1 are positive constants depending only on
nsp;ijj('Onj N)q;],q;g('lnle).
Observing in (15) that n—gq;; +0”q”/p” <n—y(i=l,n
j=1,N), where v = mln{qu J”ql]/p” 1 < <n,
1 < j < N}, we obtain inequality (9).H

Lemma 4. Let peP* and {Aj}eA;, (Fj;) €
Fp, ue Wpl(-)(QR*) are such that the integral identity
(2) holds for arbitrary v € Wpl(_)(QR*)7 v|r, s, Uk, =0,
where R, > 1 is some number.
Then for every numbers Ry > 0,R > 1, Ry < R < R,,
the inequality (3) is fulfilled.

O Proof. Let R be any number in the interval

[1; R,]. Put in (2) v = u¢®, where ( is defined in (10).
After simple transformations we get

/Z ZA” x, Ojuy) Ouj + Agj(z, U)UJ}C dr =

Qlell

N

N n n
/ 503 Rdhuscdes [ 303 Fyuscacde-
j=11i=0 G J=1i=1
N n
—S/ZZAij($,ain)Uj Cs’lﬁi(dx. (16)
G J=1i=1

Arguing the same way as in proof of Lemma 3 (see
(12),(13)), we derive

/Z S 105 @I + g @)} ) d

wheres>max{qj 1<z<n1<]<N}1sanar—
bitrary number; C’l, C’g, C’3 are some positive constants
depending only on n, s, p;;, p” (t=0,n,7=1,N), Qijs

Proceeding just as in proof of Lemma 3 (see (15)),
we obtain the estimate (3). W

IV. Proof of the Theorem 1

Solvability of the problem SA(AI’;, Fp, U,
peP*). Let {A;;} € Ay, (Fi;) € F, for some p € P*
and k is an arbitrary natural number. Put FZ; def Fiixk,
i=0,n,7=1,N, where x;, € C®(Q), 0 < xx <1 on

Q, xe =1on Q_g/4, xx =0 on Q\Qy_q /5.

Define U}, as the subspace of the space W;(,)(Qk),
consisted of functions, satisfying the condition
v|r, ,us, = 0 in a sense of trace. Let Uj denote the
adjoint to U space and (-,-); denote the canonical
bilinear form on U, x Uy.

Define the operator Ly, : Uy, — Uj, as follows

Lkuka/Z ZAUzﬁu] 0jvj+

ijlzl

+Aoj(z,u) vj}dx Yu,v € Uy.

It is easy to verify that the operator Ly, : Uy — Uj,
is strictly monotone, bounded, coercive and hemiconti-
nuous. This fact can be proved by analogy to the case
of constant exponent of nonlinearity with the aid of in-
equalities in Lemma 1.

We search for a function u* € U}, satisfying for all
v € Uy the equality

(Lyu®,v k—/zz 5O dx.

Jj=11i=0

(18)

The existence of a function u* can be proved by

Galerkin’s method (see, for instance, [11, p. 22]). The
uniqueness of function u* follows from strictly mono-
tonicity of operator Ly.

Given functions u* for all k€N. Extend them by zero
in Q. Keep the notation u* of these extensions. We
claim that the sequence {u¥}?°, contains the subse-
quence converging to ueSSA ({A;;},(F;;)) in some sense.

Indeed, let k and [ be arbitrary natural numbers and

G d=1i=1 1 < k < I; Ry, R are arbitrary real numbers such that
0< Ry <R<k-—1,R>1. Observe that Fk —Fl
D nts—qi,+oi ‘ﬁj (i =0,n,7=1,N) on Q_;. From Lemma 3, takmg
§C1Z R P+ R, =k —1, we get
j=11i=1
N N n . - o kpii(x)=29k _ 19, pij®)—-29 1
+Ca [ S @I ¢ (o)das | {30200 - it
— = Qr, Jj=1 =1
Qp 7541
ol ><(aluk—a-ul-)ﬂu’?—ull\p‘”(m)}dm < C’4LR”77
*C?’/Z\hj( )P0 D¢ () dr, (17) B N R-Ry
G 971 (19)
MATHEMATICS 9
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where Cy > 0, s > 0 are constants not depending on k,
I, Ry and R; ~y is such that n —~ < 0 (it can be assigned
in such a way on the basis of Theorem’s 1 assertion).
Let € > 0 be an arbitrary number. Fix any value
of Ry > 0 and take R > max{1; Ry} sufficiently large
to make right-hand side of inequality (19) be less than
€. Then for every k > R+ 1 and | > k the left-hand
side of inequality (19) is less than €. It means that the
sequence {u ’Q }k , is fundamental in L, (.)(Qr,)

(j = 1,N). Smce Ry is an arbitrary positive number,
there exist functions u; € Ly (.),10c(22) (j = 1, N) such
that

k : o)

U T U strongly in L, () 10c(8), =1,
(20)
Show that the sequences {uk}:o 1 {AOJ }20
{Ai; (0t ()}, are bounded in Wl( ) 1Oc(ﬁ)

Lpzj(A),loc(Q% Lp:;j( ),IOC(Q) (Z = 1 n ] = 17N) re-
spectively.

Indeed, let Ry, R be some real numbers such that
0 < Ry < R, R>1. According to Lemma 4 for every
natural number £ > R + 1 we conclude

[ (S wates
Oy =1 =1

(21)
where C12(Rp) > 0 is constant not depending on k but
possibly depending on Ry.

Combining condition 2), inequality (7) and estimate
(21), we obtain

/I%un ) [Peit) d <

pgm,(z) P (m)
| Po; (@) +hj> % dr < C13(R0),

</ (ﬁ_jl Bl 2)

QRO

(22)
FICOF P <

/ |A” x, 8u ))

§‘/(K$0+w&mmwf”“M@@
Qr,
(23)
where ¢ = {1,...,71}, ] = {1,...,N}, Clg(Ro) > 0,
C14(Rp) > 0 are constants not depending on k but pro-
bably depending on Rj.
Condition 1) and (20)—(23) yield the existence
of a subsequence {ukm ;):: of the sequence {uk}:il
and functions v € W( ), oe(®)s Xij € Lp*ij(‘),loc(ﬁ)

(i=0,n,j =1,N) such that

i  Cot

Pii(2) g ¢ < C14(Ro),

AOj("Ukm(.))_]?OC xoj(+) weakly in Lp’aj(-),loc(ﬁ)a
(26)
Agj(z,ubm(2)) — Agj(z,u(x)) forae. z€Q,

m—00

”( ,(‘Zujm( )>m:)>o Xij(-) weaklyin Ly ( )loc(ﬁ).
(28)
In view of (20), (24)—(27) and Lemma 1.3 in [11,
p.25] we deduce that
v =u, xoi(+) =Ao;(u(-)), j=1,N. (29
Show that
xij(+) = Aij (- 0y (), i=T,n, j=1,N. (30)
By virtue of inequality (6) we have
/ZZ i (z, 3u m) = ,J(:zz,aiwj))x
Jj=1 =1
X (81"1/?7" — 81w]) Yvdxr >0 (31)
for allm € N, w € W) ) ,,.(Q), ¥ € C2H(9Q).
Observe that for every m € N the equality
/ Z ZAij(x,aiuf’")aivj-l—
o 1= 1 i=1
+Ag; (z, ubm) Z ’“8 ’UJ} =0 (32)
holds for all v € Wl( ), @), vlr, ., =0,suppv C Oy, .

Let us take v = uFm 1), where 1 € CL*(Q2). Combining
the obtained equality and (32), we conclude

N n
— / Z ZAij(x, Biu?m)alu?m Ydx =
o J=li=1
N n
/ AO] u??n w o Z Fl‘};‘”L 6@’U§nl 1,0 +
Q 7j=1 =0
+ZA” €, 8 U m "L ﬂ/) ZF]C'" S }dfl:
=1
(33)
From (31) and (33) we have
N
/Z{Aoj(munl) m,(/}_
Q J=1

— 3 Bl Gt + 3 Ay, 0k O
i=0 i=1

n N n
—ZFS’”u?m }d:v—i—/ZZ( UHCGU ™) Oyw;+
=1

J=1i=1
k . 1 0O
u*m — v weakly in W3 10e(82), (24)
e P! Ay (@, 00y) (O = wg)) wdw <0 (34)
ukmmjgo u a.e.on £, (25)  for every w € W1 (), 10e(Q), ¥ € CET(Q).
10 MATEMATUKA
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Passing to the limit in (34) and keeping in mind the
definition of F)", (20), (24), (26), (28) and (29), we
derive

/ZAOunuj Z

j O + Z Xij j Oith—

=1

N

= Fiju; 0 da:—i—/zz (xi;05w0;+
i=1

Q J= 14i=1
+Aij (.I 6w])(8zuj - 8iwj)) ’(ﬂdl‘ S 0 (35)
for every w € W (), 10e (), ¥ € CEHT(Q).

Let 1 € CLT(Q) be an arbitrary function and [ € N
be such that supp ¢ C Q,. Put in equality (32) v = u)
for m > [ and pass to the limit as m — oco. We conclude

N n N
- / o> xiduipdx = / > { Aoj @, wyuu-
P ) =

Q j=11i=1

— Z Fij 8iu]‘ ¢ =+ Z Xij Uj 81111 — Z Fij Uy (91’4[)} dzx.
=0 =1 =1

(36)
From (35) and (36) it follows that
N n
/ZZ Xij — Aij(x, 0iw;)) (Ouj — Qyw;) Ydx >0
o J=1i=1
(37)

for every w € Wl( ), 10e (), ¥ € CHT(Q).

Taking in (37) w=u—Ag, A >0, g € W( ), 10e(Q)
and dividing by A, we deduce

n

/ij;Z(xw Ajj (2, 0;(u;

=1 1i=1

=) )digvda = 0

for every g € W;}(-),loc(ﬁ)' Let us tend here X to 0.
Combining Lebesgue Theorem on passage to the limit
under the integral, conditions 1), 1’) and inequality (7),
we get

[ 00

lezl

A;j(x,0;u;)) Oigpda > 0. (38)

for every g € W o), 10e (D).

Since (38) is fulfilled for any g € W( ), 10c (), as-
signing first g(z) = z;, | = 1,n, and then g(z) = —xy,
[ =1,n, we obtain (30).

Let v EI/?/ Joc

In view of the deﬁmtlon of uFm for every m > I, where
[ € N is such that suppv C Qy,, we have

N n
/ Z{Z Az, aiufm)aivj + Ag; (x, uPm )v;—
Qp, i=1 i=1

(,Ty), supp v is a compact in €.

S~ o) om0 )

=0

Let us pass to the limit in (39) as m — +oo with re-
gard to (26) and (29), (28) and (30). As a result we
obtain (2) for the given function v. As v is an arbitrary
function and 0 = u*» — w on I';, we have proved that

u €SSA ({Ai;}, (Fyy)).

Uniqueness of the problem SA (A;,IFP,UP ipE IP’*).

Let {Ai;} € Aj, (Fi;) € F, for some p € P~
We claim that the set SSA({A”} (Fi;)) contains at
most one element. Arguing by contradiction, we as-
sume that there are two (different) elements u', u? from
SSA({4;;},(F;;)). From Lemma 3 (R, is an arbitrary
number) we conclude

/ S {300
Qr, 71 =L

pij(z)—Qaiujl — |@lu?

Pij (I)_Qazu-?) X

RS

u?|p°j(x)}dx§04 R"™7,

(40)
where Ry, R are some constants, 0 < Ry < R, R > 1;
~v > 01is such that n—v < 0; Cy > 0, s are the constants
not depending on Ry and R.

Fix Ry > 0 and pass to the limit in (40) as R — +o0.
As a result we obtain u' = u? on Qg,. Since Ry > 0 is
an arbitrary number, u; = us a.e. on Q.

Weakly well-posedness of the
SA(AZ,FZ,UP ip € IP’*).

Problem SA (AZ,FZ,UP ip € P*) is a partial case of
problem SA (A;anaUp ip € IP’*), therefore its uniquely
solvability follows from uniquely solvability of problem
SA(AZ,FP,U}, ip € ]P’*)

Let {A;;} € A, (Foj) (FOJ) in Fy and u €

SSA({AU»}7 (Fij)), up € SSA({A”}, (Ft’j)), ke N. In
view of the definition of the functions v and u*, k € N,
we have

problem

/Z ZA” (x, 0yu;)0;v+Ag; (x, w)v; Fojvj}dx—O

=1 =1
(41)
N n
/Z ZA,] x, 3u )0;vj+Agi(z,u )vijéijj}dx =0,
j=1 =1
(42)

where v GW (- )IOC(Q,Fl), suppv is a compact in

Q. Let Ry and R be arbitrary constants such that
0 < Ry < R, R>1. From (41) and (42) by virtue
of Lemma 3 we deduce for arbitrary k

N n
/ S D0k 120 — 00575 205 x
Ro = =1

R S
><(&u§—3mj)+|uf—uj|p°j($)}dac< ( ) X

“\R— Ry

MATHEMATICS
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X|C4R™7 4+ Cs /Z'FOJ Foj; |p°’($)dx} (43)
Qp J=1

Let € > 0 be any however small number. Fix ar-
bitrary selected Ry > 0 and pick R > max{1;2Ry} so

large that
R \° €
_ n—y ~ &
Cs <R — Ro) R < 0%

Observing HF

(44)

FOJHL e HO2R) b — 0, j = LN,

we derive that the left-hand 31de of (43) tends to zero
when k — oco. Because of 5= R
said above yields the existence of a natural number ko
such that for every k > kg

Foy(2)[Pos® dw < g

(45)

Taking into account (44) and (45), from (43) we deduce
for all k > kg

/z

pij(T)— 28 ’U,

|8u

pij(z)_Qain) X

— |O5u;

Oiuy) + I () =y (@) | de < e.

Hence it follows u* — u in U,. Thus we

— 00
have proved the well-posedness of the problem
SA(AZ,FZ,UP ip € ]P’*). |

Thus we’ve considered the boundary problems for
the system of elliptic equations in general anisotropic
Lebesgue-Sobolev spaces. We’ve proved the weakly well-
posedness of such problems in class of functions with-
out conditions at infinity. The boundary conditions are
mixed. The coefficients in the main part of the equa-
tions allow the polynomial growth with respect to space
variable.
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