Browsing by Author "Махней, О. В."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Асимптотика фундаментальної системи розв’язкiв диференцiального рiвняння з мiрами на пiвосi(Видавництво Львівської політехніки, 2010) Махней, О. В.За допомогою концепцiї квазiпохiдних побудовано асимптотичнi формули для фундаментальної системи розв’язкiв диференцiального рiвняння n-го порядку з мiрами на пiвосi. С помощью концепции квазипроизводных построены асимптотические формулы для фундаментальной системы решений дифференциального уравнения n-го порядка с мерами на полуоси. With the help of a conception of quasiderivatives the asymptotic formulas for a fundamental system of solutions of a differential equation of the n-th order with measures on the semi-axis [0, ∞) are constructed.Item Про властивості розв'язків узагальненого квазідиференціального рівняння другого порядку(Видавництво Національного університету “Львівська політехніка”, 2000) Махней, О. В.У цій статті наведено узагальнення інтегральної ознаки стійкості Ляпунова для несамоспряженого узагальненого квазідиференціального рівняння другого порядку. In this article the generalization of the integral Liapunov criterion of stability for the non-self-adjoint generalized quasidifferential equation of the second order is given.Item Функцiя Грiна крайової задачi для сингулярного квазiдиференцiального рiвняння(Видавництво Національного університету "Львівська політехніка", 2009) Махней, О. В.Побудовано функцiю Грiна крайової задачi для квазiдиференцiального рiвняння з узагальненими коефiцієнтами i однорiдними крайовими умовами. За допомогою методу введення квазiпохiдних та отриманих виразiв для спряжених крайових умов дослiджено властивостi функцiй Грiна спряжених крайових задач. In this paper, a Green function of boundary problem of quasidi erential equation with distributions in coe cients and homogeneous boundary conditions is constructed. With the aid of the method of introduction quasiderivatives and obtained expressions for adjoint boundary conditions properties of Green functions of adjoint boundary problems are investigated.