Browsing by Author "Петришин, І."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Визначення теплоти згоряння природного газу в побутовому секторі(Видавництво Львівської політехніки, 2017-02-11) Петришин, І.; Присяжнюк, Т.; Бас, О.; ДП "Івано-Франківськстандартметрологія"Item Дослідження точності визначення координат точок місцевості лазерним сканером VLP-16, встановленим на БПЛА DJI S1000(Видавництво Львівської політехніки, 2022-02-22) Глотов, В.; Петришин, І.; Hlotov, V.; Petryshyn, I.; Національний університет “Львівська політехніка”; ТОВ “МГГП”; Lviv Polytechnic National University; MGGPМета. Метою роботи є дослідження точності визначення координат за допомогою лазерного сканера VLP-16, встановленого на октокоптері DJI S1000. Автори реалізували технологічну схему встановлення лазерного сканера VLP-16 на октокоптері DJI S1000 та методику дослідження точності визначення просторових координат точок об’єктів лазерним сканером. На кафедрі фотограмметрії та геоінформатики розроблено високотехнологічний інтегрований комплекс БПЛА гелікоптерного типу DJI S1000 із повітряним лазерним сканером Velodyne Lidar VLP-16. У результаті створення комплексу отримано цілком уніфіковану систему без додаткового виготовлення прецизійних деталей та вузлів. Стосовно БПЛА S1000 гелікоптерного типу проведено випробувальні польоти, щоб визначити точність отриманих просторових координат за допомогою сканера, встановленого на корпусі октокоптера. Результати становили відповідно: mX = 0,04 м, mY = 0,03 м, mZ = 0,04 м. Зважаючи на отримані результати, можна застосовувати комплекс для виконання різноманітних топографічних та прикладних завдань. Результати. Запропонований комплекс перевірено на відповідних контрольних точках, отриманих у результаті аеросканування з БПЛА за контрольними точками, що дало можливість обґрунтувати ефективність запропонованої методики. Наукова новизна. Вперше випробувано компактний лазерний сканер VLP-16 на БПЛА типу октокоптер DJI S1000. Практична значущість. Отримані дані лазерного сканування можна використовувати для вирішення різних інженерних завдань, а саме: створення 3D-моделей архітектурних споруд, визначення об’ємів вироблення кар’єрів, створення цифрових моделей об’єктів інженерно-транспортної інфраструктури: ліній електропередач, інфраструктури автомобільних доріг і залізниць, реконструкції пам’яток архітектури, дослідження руслових процесів, визначення кількісних показників під час таксації лісуItem Розроблення аерознімального комплексу на основі БПЛА октокоптера DJI S100(Видавництво Львівської політехніки, 2021-02-16) Глотов, В.; Ладанівський, Б.; Кузик, З.; Бабушка, А.; Петришин, І.; Hlotov, V.; Ladanivskyi, B.; Kuzyk, Z.; Babushka, A.; Petryshyn, I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityМета. Мета роботи – розроблення аерознімального комплексу на основі БПЛА гелікоптерного типу DJI S1000 для виконання аерознімальних робіт, до складу якого входять лазерний сканер (ЛС) та цифрова знімальна камера (ЦЗК). Методика. Аерознімання протягом кількох десятиліть є ефективним інструментом для виконання геодезичних робіт, геофізичних досліджень та проведення різних видів моніторингу. З іншого боку, застосування не тільки цифрового знімання, а й лазерного сканування об’єктів дає змогу максимально підвищити точність отримання координат точок на місцевості та обійтись без такого процесу, як планово-висотна прив’язка на місцевості, що становить понад 80 % польових робіт, тобто набагато здешевити створення картографічних матеріалів. Окрім цього, застосування лазерних сканерів на борту безпілотних літальних апаратів допомагає вирішити низку науково-прикладних завдань у різних галузях, таких як інженерні вишукування, екологічний моніторинг, дослідження ландшафтів та моделювання територій, в будівництві, архітектурі, археології тощо. Всебічне вивчення, дослідження та моніторинґ навколишнього середовища передбачають наявність та використання високоефективних сучасних технологій, спеціального програмного забезпечення для опрацювання та аналізу даних та кваліфікованих людських ресурсів. Ааерознімальні лазерні сканери є новітньоювисокоточноютехнологієюотримання даних про об’єкт безконтактним методом, їхнє призначення багатоцільове. Їх активно використовуюсь у світі від початку 2000-х років завдяки перевагам порівняно із традиційним аерофотозніманням. ЛС виготовляють провідні компанії світу, вони доступні на ринку і попит на них серед іноземних фахівців значний. На жаль, в Україні аерознімальні лазерні сканери застосовують обмежено, для виконання особливих завдань із залученням іноземних фахівців. У цій галузі наша країна істотно відстає порівняно з іншими європейськими країнами. Тому придбання та застосування такого програмно-технологічного комплексу та БПЛА допоможе вирішити та прискорити вирішення багатьох важливих науково-прикладних завдань в Україні, а також збільшить потенціал, можливості та престиж у вітчизняній і світовій науці та практиці. Результати. Розроблено макетний зразок встановлення і реалізації ЛС Velodyne VLP-16 на БПЛА гелікоптерного типу DJI S1000. Автори проаналізували відомі системи та створили оптимальний варіант під’єднання та сполучення елементів, завдяки чому вдалося максимально спростити схему розташування пристроїв, а це дало можливість зменшити собівартість запропонованого комплексу. Наукова новизна та практична значущість. Вперше в Україні розроблено та запропоновано спосіб встановлення ЛС на БПЛА гелікоптерного типу. За допомогою аерознімальної лазерної сканувальної системи, встановленої на борту безпілотного літального апарата гелікоптерного типу, можливо вирішувати важливі науково-прикладні завдання, як-от: моніторинґ за технічним станом великогабаритних та важкодоступних конструкцій – атомних, гідро- і теплових електростанцій, ліній електропередач, газопроводів тощо; спостереження за станом автомобільних доріг, виявлення місць пошкоджень поверхні та інших небезпечних місць з метою запобігання автокатастрофам; виявлення пошкоджень лісових масивів та сільськогосподарских угідь; спостереження та недопущення зсувів ґрунтів у горах і на промислових кар’єрах, місць виникнення ґрунтових ерозій; моніторинґ водних ресурсів, зміни контурів і висот берегової смуги; виявлення дефектів покрівель, деформацій, настінних тріщин на висотних будівлях для проведення архітектурних обмірів, 3D-моделювання, документування та збереження об’єктів культурної спадщини; сприяння в археологічній розвідці з метою виявлення археологічних об’єктів та дослідження артефактів. Окрім цього ЛЗ із периферією можна встановлювати на інших рухомих об’єктах (автомобілях, залізничних дрезинах, човнах тощо) та сканування зі сталих базисів у стаціонарних умовах.