Browsing by Author "Fedorchuk, A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item New cobaltites and chromites with a distorted K2NiF4 type of structure(Видавництво національного університету „Львівська політехніка”, 2009) Vasylechko, L.; Fedorchuk, A.; Trots, D.; Prots, Yu.; Schmidt, M.; Hoffmann, S.Item Аналіз похибок еліпсоїдних висот на основі результатів GNSS-нівелювання(Видавництво Львівської політехніки, 2021-02-16) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityДослідження впливу похибок на результати вимірювань завжди є актуальним завданням. Аналіз таких величин дає можливість оцінити характер зміни та величину впливу похибок для подальшого врахування або компенсування, або зведення до мінімуму. В цій роботі розглянуто похибки визначення еліпсоїдних висот із GNSSспостережень. У визначенні еліпсоїдної висоти цим методом можна досягти точності 1–2 см у статичному режимі (Static) та 2–4 см у режимі реального часу (RTK). Отже, точність вибраного режиму спостережень вказуватиме на початкові межі впливу похибок еліпсоїдних висот, а чинники, що виникають безпосередньо під час спостережень та під час опрацювання даних, визначатимуть, в яких межах змінюватимуться ці похибки щодо початкових меж. Мета цієї роботи полягає у проведенні аналізу похибок еліпсоїдних висот на основі результатів GNSSнівелювання, отриманих у режимах статики та RTK. Методика. Для дослідження використано дані GNSSнівелювання на 17 пунктах (стінні та ґрунтові репери) ходів нівелювання І–ІІ класів, які розташовані в радіусі 15 км від перманентної станції SULP Національного університету “Львівська політехніка”. Спостереження виконано в режимі статики (4-годинні) та RTK (8–10 вимірювань). Пункти поділено на три категорії (5–6 пунктів): 1) статика на стінних реперах; 2) режим реального часу на стінних реперах; 3) статичний режим на ґрунтових реперах. Комбінуванням режимів спостережень та заданих категорій утворено чотири GNSS-мережі, що містять 11, 11, 12 та 17 пунктів. Результати. Для кожної категорії визначено у процентах, у яких межах змінюються похибки еліпсоїдних висот у статичному режимі спостережень та режимі реального часу, із застосуванням методу GNSS-нівелювання. На основі отриманої інформації встановлено, що для першого випадку похибки еліпсоїдних висот у середньому змінюються у межах ±43 %, для другого – ±36 %, а для третього – ±14 %. Аналіз статистичних характеристик для кожної категорії свідчить про те, що стандартне відхилення даних статичного режиму становить 2 % та 19 %, а режиму RTK – 12 % відповідно. Наукова новизна та практична значущість. Характер зміни меж похибок визначення еліпсоїдних висот дає уявлення про те, якої точності слід очікувати, виконуючи GNSS нівелювання залежно від режиму спостережень. Такі дані відіграють важливу роль у вирішенні науково-прикладних завдань методом GNSS-нівелювання, таких як побудова нових нівелірних мереж або моніторинг пунктів висот вже наявних мереж.Item Аналіз сучасних моделей відлікових поверхонь для визначення висот методом GNSS-нівелювання(Видавництво Львівської політехніки, 2022-06-14) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityУ роботі розглянуто різні джерела інформації, що стосуються проблематики визначення висот методом GNSS-нівелювання. Реалізація цього методу потребує наявності висот геоїда або квазігеоїда, які сьогодні можна отримати із відповідних моделей. В останні десятиліття науковці з різних країн світу розробили чимало глобальних, регіональних та локальних моделей геоїда та квазігеоїда. Це сприяло появі великої кількості наукових досліджень, які стосуються тематики GNSS-нівелювання. Мета роботи – виконати аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій за критеріями, що істотно впливають на ведення досліджень у галузі визначення висот методом GNSS-нівелювання. Методика. Розглянуто 44 роботи, опубліковані у 2001–2021 рр. Серед досліджень у цьому напрямі можна виділити три види робіт: 1) 13 публікацій щодо методів побудови самих моделей; 2) 12 – щодо перевірки їх точності та 3) 19 робіт щодо “коригування” модельних висот. На першому етапі дослідження аналіз здійснено за критеріями, що характеризують моделювання поверхні геоїда та квазігеоїда, серед яких питання теорії Стокса і Молоденського, математичні способи аналізу й опрацювання даних, систем припливів, ондуляції геоїда нульового порядку та масштабних рівнів моделей. На другому етапі проаналізовано частоту публікувань за роками та встановлено активність подання наявних моделей геоїда та квазігеоїда з вибірки країн, здійсненої на підставі всіх робіт, вибраних у цьому дослідженні. На третьому етапі виконано кількісний аналіз офіційно опублікованих моделей геоїда та квазігеоїда щодо частоти публікувань за досліджуваний період. Встановлено відношення точності висот глобальних моделей геоїда щодо ступеня/порядку їх обчислення. Результати. Автори 58 % проаналізованих публікацій використовують у своїх дослідженнях теорію Стокса, а у 42 % – теорію Молоденського. Серед математичних способів аналізу та опрацювання даних у 27 % робіт застосовано метод середньої квадратичної колокації, по 20 % – метод найменших квадратів, метод “видалення – відновлення” та метод модифікації формули Стокса найменшими квадратами (або KTH-method), метод швидкого перетворення Фур’є – у 13 %. У публікаціях щодо створення глобальних моделей Землі здебільшого в розрахунках використовують параметри припливної системи “tide free” – загалом 40 %. Не менш важливим критерієм (33 % робіт) можна вважати врахування параметра ондуляції геоїда нульового порядку (“zero degree term”). Загалом 41 % досліджень спрямовано на створення та аналіз моделей квазігеоїда саме регіонального масштабу. За досліджуваний проміжок часу найбільше робіт опубліковано у 2012 та у 2018 рр. Передовими країнами щодо розроблення моделей квазігеоїда є Канада, Польща, Швеція та США, а глобальних моделей геоїда – Німеччина, США та Китай. За 2001–2021 рр. офіційно представлено 99 глобальних моделей геоїда різних ступенів/порядків, серед яких для досліджень найчастіше використовують моделі серій GOCO, EIGEN та EGM. Також за цей проміжок часу запропоновано 177 моделей квазігеоїда, найбільше з яких опубліковано у 2019 р. На основі цих даних простежується зв’язок із частотою публікувань у 2008–2021 рр. Для точності глобальних моделей геоїда щодо ступеня/порядку їхнього обчислення характерні систематичні зміни в межах 0,52–1,92 м, 0,38–0,50 м, 0,23–0,38 м та 0,12–0,14 м для моделей 60-220, 220-260, 260-720 та 720-2190 ступеня/порядку відповідно. Наукова новизна. Аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій у сфері використання методу GNSS-нівелювання дає можливість встановити переваги та недоліки досліджень у цій галузі. Практична значущість. Дані такого аналізу можна використати для вирішення ключових проблем щодо визначення висот методом GNSS-нівелювання, які потребують додаткових досліджень, здійснивши пошук модернізованих рішень.Item Застосування методики визначення координат за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій(Видавництво Львівської політехніки, 2022-02-22) Савчук, С.; Проданець, І.; Федорчук, А.; Savchuk, S.; Prodanets, I.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Закарпатська регіональна філія ДП “УКРДАГП”; Lviv Polytechnic National University; Transcarpathian regional branch of SE “UKRDAGP”Одне із основних завдань геодезії – визначення координат з високою точністю за допомогою GNSSспостережень. Для виконання таких завдань зазвичай застосовують відносний метод визначення координат у статичному режимі. Статичний режим спостережень здебільшого використовують для побудови геодезичних мереж, оскільки він найточніший. Методика відносного методу основана на визначенні координат невідомого пункту щодо відомого. Координати базового пункту повинні бути відомі, найчастіше точно задані на підставі державних геодезичних мереж. У цьому дослідженні базовими пунктами прийнято активні референцні станції, координати яких задано із тижневого комбінованого розв’язку GNSS-мережі. Мета роботи – дослідити точність застосування методики визначення координат за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій. Методика. У роботі використано дані GNSS-спостережень, виконаних на пунктах тріангуляції Державної геодезичної мережі, та дані референцних станцій. На їхній основі створено умовні GNSS-мережі, які складаються із трьох референцних станцій та одного пункту тріангуляції. Процес опрацювання даних у програмному пакеті передбачав, що контрольним пунктом слугували найближчі референцні станції, уточнені координати яких фіксували як контрольні та задані в системі ETRF2000. Отримані набори координат однойменних пунктів та станцій були трансформовані в систему УСК2000. Точність визначених у такий спосіб координат проаналізовано на основі різниць координат та їх стандартних відхилень. Різниці для референцних станцій визначали відносно уточнених тижневих координат, а для пунктів тріангуляції щодо середнього значення. Результати. Отримані різниці на пунктах державної мережі містяться у межах 1–2 см, набуваючи як додатних, так і від’ємних значень. Виняток – лише п’ята сесія спостережень, де різниці становлять 2–4 см із додатним знаком. На референцній станції KOVL різниці координат змінюються від –1,2 см до +1,8 см, а на станції MEL2 від 0 см до 5,4 см. Зміни координат на пунктах тріангуляції оцінено стандартним відхиленням на рівні 2,1 см, 1,1 см та 1,9 см для XYZ, відповідно. Точність усіх інших координат референцних станцій становить 0,3–1,6 см, із середнім коливанням від –2,7 см до +1 см. Наукова новизна та практична значущість. У роботі показано методику визначення координат у системі УСК2000 за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій. Запропонована методика дає змогу використовувати супутникові методи для визначення координат у державній системі УСК2000 із забезпеченням точності на рівні 1–2 см, а також істотно спростити і пришвидшити процес польових робіт