Browsing by Author "Kozak, Khrystyna"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Alternative energy source for heating system of woodworking enterprise(Lviv Politechnic Publishing House, 2018-03-29) Савченко, Олена; Желих, Василь; Юркевич, Юрій; Козак, Христина; Багмет, Сергій; Savchenko, Olena; Zhelykh, Vasyl; Yurkevych, Yurii; Kozak, Khrystyna; Bahmet, Serhii; Національний університет «Львівська політехніка»; Lviv Polytechnic National UniversityНа деревообробних підприємствах наявна велика кількість відходів деревини, енергетичний потенціал яких можна використовувати як альтернативне джерело енергії для вироблення теплової енергії на котельнях. Одним з найдешевших та екологічно безпечних способів переробки органічних відходів деревини вважається газифікація. У процесі газифікації утворюється горючий газ, який доцільно використовувати для заощадження традиційних джерел енергії під час вироблення теплової енергії. Розглянуто конструкцію газогенераторної установки, яка призначена для утилізації відходів деревини та одночасного вироблення генераторного газу. Утворений генераторний газ використовується в опалювальній котельні деревообробного підприємства як альтернативне джерело енергії для приготування теплоносія системи опалення. Встановлено нижчу теплоту спалювання виробленого генераторного газу.Item Analytical studies of coolant temperature in solar panel(Lviv Politechnic Publishing House, 2018-03-29) Касинець, Мар’яна; Шаповал, Степан; Козак, Христина; Гулай, Богдан; Kasynets, Mariana; Shapoval, Stepan; Kozak, Khrystyna; Hulai, Bohdan; Національний університет «Львівська політехніка»; Lviv Polytechnic National UniversityПроаналізовано наявні системи сонячного теплопостачання. Отримано залежність річного надходження сонячної радіації на геліопанель від азимутального кута γ і кута нахилу поверхні, яку можна використати для дослідження поверхонь із довільною кількістю орієнтацій. Представлено тепловий баланс для цієї геліопанелі за певний проміжок часу. Досліджено залежності для визначення кількості енергії, що надходить від Сонця на кожну із поверхонь геліопанелі та кількості тепла, закумульованого геліопанеллю. Проаналізовано втрати конвекцією від покриття геліопанелі та радіаційні тепловтрати із поверхні покриття в навколишнє середовище, а також тепловтрати через теплоізоляцію із тильної сторони та бокових стінок геліопанелі. Отримано залежність температури теплоносія в геліопанелі від річного надходження сонячної радіації та сумарних тепловтрат геліопанелі.Item Civil buildings heating system thermal renewa(Видавництво Львівської політехніки, 2019-03-23) Желих, В. М.; Возняк, О. Т.; Козак, Х. Р.; Довбуш, О. М.; Касинець, М. Є.; Zhelykh, Vasyl; Voznyak, Orest; Kozak, Khrystyna; Dovbush, Oleksandr; Kasynets, Mariana; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityВажливим пріоритетним завданням економічної політики України є дбайливе використання енергоносіїв. В країні ведеться широкомасштабна політика в галузі енергоощадності, а завдання енергоощадності є комплексними та охоплюють як законодавчу базу, так і технічні інновації. Безперечно, в результаті термонагрівання енергетичні потреби системи опалення будуть зменшуватися. Для досягнення максимального ефекту необхідно визначити економічно доцільний рівень теплозахисту опалювальних систем, який повинен бути оптимальним як у теплотехніці, так і в економічному плані. Одним із ефективних способів зменшення енергозатрат на потреби народного господарства є проведення термомодернізації систем теплопостачання. У статті наведено економічні показники термореноваційних заходів під час реконструкції системи опалення житлового будинку. Під час реконструкції системи опалення порівнювали такі термореноваційні заходи: встановлення повітряного сонячного колектора, реконструкція системи опалення, встановлення системи сонячного повітряного опалення. Зокрема, у повітряному каналі вздовж руху теплоносія встановлено турбулятори потоку, виготовлені з листової сталі у вигляді кругового крученого коноїда із селективним покриттям. Визначено затрати коштів на реалізацію вказаних термореноваційних заходів, а також економію енергоресурсів за рахунок їх впровадження та економічний ефект у грошовому еквіваленті. Визначено показники економічної ефективності згідно з новітньою методикою United Nation Industrial Development Organization, namely: “SimplePayBackTime”, “Net Present Value Ratio”, “Internal Rate of Return”. Проаналізовано сукупну дію вказаних термореноваційних заходів згідно із зазначеною методикою.Item Energy potential of crop waste in heat supply systems(Видавництво Львівської політехніки, 2019-03-23) Желих, В. М.; Савченко, О. О.; Фурдас, Ю. В.; Козак, Х. Р.; Миронюк, Х. В.; Zhelykh, Vasyl; Savchenko, Olena; Furdas, Yuriy; Kozak, Khrystyna; Myroniuk, Khrystyna; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityОднією з найперспективніших складових відновлюваної енергетики України є біоенергетика. Вона основана на використанні біомаси, яка слугує вихідною сировиною для виготовлення палива у твердому, рідкому та газоподібному станах. До біомаси зараховують відходи та залишки сільського господарства, відходи деревини у лісовому господарстві, деревообробній та целюлозно-паперовій промисловості, енергетичні культури, органічну частину промислових та побутових відходів. Україна володіє великими площами земельних ресурсів, має сприятливі ґрунтово-кліматологічні умови та розвинене сільське господарство, тому може успішно розвивати біоенергетику, основану на рослинній біомасі. Найдоцільніше відходи рослинництва переробляти на біогаз, який дасть змогу сільськогосподарським підприємствам отримати додаткове джерело енергії та забезпечить виробництво високоякісних органічних добрив. Крім того, виробництво біогазу не шкідливе для навколишнього середовища, оскільки не спричиняє додаткову ремісію парникового вуглекислого газу і зменшує кількість органічних відходів. Біогаз зручний у використанні для енергетичних потреб, знаходить застосування на децентралізованих блочних теплоцентралях для електро- і теплопостачання, може подаватися в газотранспортну мережу та використовуватися як моторне паливо для автомобілів. У статті запропоновано методику визначення кількості біогазу та проведено аналітичні дослідження метаноутворення у побутовій біогазовій установці з відходів рослинництва (це, зокрема, кукурудзяні стебла, трава, листя винограду, листя цукрових буряків, солома зернових культур, сіно червоної конюшини, солома жита). На підставі результатів аналітичних досліджень встановлено, що із запропонованих видів біомаси найбільше біогазу утворюється з трави, соломи зернових та кукурудзи.Item Experimental research of performance characteristics for polypropylene pre-insulated pipes(Видавництво Львівської політехніки, 2020-02-10) Желих, В. М.; Козак, Х. Р.; Пізнак, Б. І.; Фурдас, Ю. В.; Стадник, А. В.; Zhelykh, Vasyl; Kozak, Khrystyna; Piznak, Bogdan; Furdas, Yurii; Stadnyk, Andrii; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityУ сучасних умовах стрімкого розвитку технологій із різким зростанням енергопотреби необхідним фактором економічно ефективного функціонування промислових підприємств і об'єктів теплоенергетики є раціональне використання теплової енергії. Тоді як до 70 % тепла втрачається при її транспортуванні до споживача, завдання пошуку енергоощадних рішень є надзвичайно актуальним. Застосування сучасної якісної теплової ізоляції трубопроводів теплової мережі є ефективним та надзвичайно важливим методом, який дозволяє скоротити втрати теплоти на 30 %. Теплову ізоляцію передбачають для лінійних ділянок трубопроводів теплових мереж, арматури, фланцевих з'єднань, компенсаторів і опор труб для надземної, підземної канальної і безканальної прокладки. Найважливішим показником якості утеплювача є його теплопровідність. Проте, внаслідок складності та динамічності теплових процесів стандартизовані, відносно точні методи вимірювань теплопро- відності будівельних матеріалів потребують значних затрат часу на виготовлення спеціальних зразків досліджуваного матеріалу, проведення випробувань, а для їх реалізації – дорогого і громіздкого обладнання. Якість усіх теплоізоляційних матеріалів трубопроводів необхідно контролювати не тільки при початковій сертифікації, а й під час випуску на виробництві та за необхідності – і при постачанні на будівельні майданчики. Є достатньо багато варіантів утеплення мережевих трубопроводів: мінеральне та склово- локно, спінений каучук, полімербетон тощо. Одним з популярних утеплювачів є пінополіуретан. До переваг теплопроводів з ППУ-ізоляцією зараховують низький коефіцієнт теплопровідності ППУ (0,032–0,04 Вт/(м·К)), технологічність виготовлення і монтажу теплопроводів, довговічність за дотримання вимог монтажу та експлуатації. Ннаведено результати експериментальних досліджень щодо визначення тепло-технічних характеристик попередньо ізольованих труб. Згідно з даними, отриманими експериментальним шляхом, коефіцієнт теплопровідності гладкого зразка пінополіуретану із закритими порами становить 0,031 Вт/(м·К), що є високим показником та відповідає вимогам, встановленим до теплової ізоляції трубопроводів. Порівняно теплотехнічні характеристики популярних сьогодні теплоізоляційних матеріалів, які використовують для теплових мереж – мінеральної вати та пінополіуретану. З порівняння зрозуміло, що пінополіуретан має кращі теплотехнічні характеристики, а також є безпечним для людини та може використовуватися у житлових приміщеннях.Item Influence of Type of Solar Modules Anchorages on Power of Solar Power Station(Lviv Politechnic Publishing House, 2019-02-26) Савченко, Олена; Козак, Христина; Savchenko, Olena; Kozak, Khrystyna; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityВироблення електричної енергії за допомогою сонячних електричних станцій є одним із шляхів до енергетичної незалежності України. Кількість електричної енергії, яку виробляє сонячна електростанція, залежить від інтенсивності сонячного випромінювання, що надходить на сонячний модуль, загальної площі сонячних модулів та їхнього коефіцієнта корисної дії. Інтенсивність сонячного випромінювання, що надходить на сонячний модуль, безпосередньо залежить від типу кріплення сонячного модуля. У цій статті визначено інтенсивність сонячного випромінювання, яка надходить на сонячні модулі з різним типом кріплення. Встановлено, що найбільша інтенсивність сонячного випромінювання надходить на сонячні модулі, які мають динамічне кріплення з двовісними трекерами. Різниця між динамічним типом кріплення з одновісними та двовісними трекерами в теплий період року практично відсутня, в холодний період року динамічне кріплення з двовісним трекером дозволяє збільшити кількість сонячного випромінювання, що надходить на сонячний модуль до 30 %. Порівняно зі стаціонарним кріпленням динамічне кріплення сонячних модулів дає змогу збільшити інтенсивність сонячного випромінювання, яке надходить на сонячний модуль, до 67 %.Item Physical modeling of thermal processes of the air solar collector with flow turbulators(Lviv Politechnic Publishing House, 2018-03-29) Желих, Василь; Козак, Христина; Дзерин, Олександра; Пашкевич, Володимир; Zhelykh, Vasyl; Kozak, Khrystyna; Dzeryn, Olexandra; Pashkevych, Volodymyr; Національний університет «Львівська політехніка»; Lviv Polytechnic National UniversityПроаналізовано існуючі системи сонячного повітряного теплопостачання. Представлено фізичну модель повітряного сонячного колектора (ПСК) із додатково встановленими турбулізаторами потоку, які розміщено у повітряному каналі сонячного колектора для покращення його теплових характеристик та ефективного використання у регіонах з помірним кліматом. Наведено енергетичні баланси для п’яти ключових елементів ПСК та записано систему балансових рівнянь. Для визначення геометричних та теплотехнічних параметрів турбулізаторів потоку записано ряд графічних залежностей. Визначено, що в повітряному каналі сонячного колектора спостерігається перехідний рух теплоносія, а максимальний коефіцієнт конвективного теплообміну між турбулізатором потоку та повітрям спостерігається за кута нахилу теплопоглинача 45 градусів. Здійснено комп’ютерне моделювання теплових процесів, які відбуваються у повітряному каналі сонячного колектора і отримано, що потужність запропонованого ПСК зросла на 23 % порівняно із сонячним колектором з плоскою теплопоглинальною пластиною.Item Research on the aerodynamic characteristics of zero-energy house modular type(Видавництво Львівської політехніки, 2020-02-10) Желих, В. М.; Фурдас, Ю. В.; Козак, Х. Р.; Ребман, М. Р.; Zhelykh, Vasyl; Furdas, Yurii; Kozak, Khrystyna; Rebman, Maksym; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityВирішення завдань аеродинаміки будівель є важливим інструментом для визначення впливів вітрових потоків на будівлю з урахуванням рельєфу місцевості. При зміні напрямків обтікання будинку змінюється характер вітрового потоку, який спричинений різною геометрією форм будинку та рельєфу, тому виникає необхідність проведення спеціальних досліджень в аеродинамічній трубі. Аеродинамічні дослідження дають можливість визначити вплив рельєфу на розподіл та значення аеродинамічних коефіцієнтів на поверхні моделі будинку, а також вплив конструкції моделі на розподіл тисків на поверхні настелення. Оскільки питання відбору тепла вітровим потоком по поверхні енергоефективних і пасивних будинків є недостатньо вивчене, було проведено ряд експериментальних досліджень щодо обтікання будівлі повітряним потоком під різними кутами . Експериментальні дослідження проводили на моделі будівлі, виконаній у масштабі 1:16, в аеродинамічній трубі в лабораторії Національного університету “Львівська політехніка”. Проаналізувавши отримані результати, можна стверджувати, що на навітряній області плоскої поверхні виникає зона додатних значень аеродинамічного коефіцієнта з хвилеподібним збільшенням при наближенні до навітряного фасаду моделі будинку. Для напрямку набігаючого потоку 0° в області навітряного фасаду моделі значення k поступово зростають у міру віддалення від поверхні настелювання і дещо зменшуються при наближенні до даху моделі. Було побудовано епюри розподілу аеродинамічних коефіцієнтів, які дають можливість вибору раціональної орієнтації будинку під час його проектування. Крім того, отримано, що на підвітряному фасаді моделі значення аеродинамічних коефіцієнтів від'ємні і знаходяться в діапазоні -0,16…-0,45 для кута набігаючого потоку α = 0°. Ці значення менші за величини, які регламентуються нормами для підвітряного фасаду будинку. А на навітряній області даху, аеродинамічні коефіцієнти набувають широкого діапазону значень від 0,63 до 1,21, що свідчить про різку зміну вітрових тисків на поверхні даху.Item The analysis of water speed influence in hot-water distribution system on the amount of heat loss(Видавництво Львівської політехніки, 2021-06-06) Капало, П.; Козак, Х. Р.; Миронюк, Х. В.; Kapalo, Peter; Kozak, Khrystyna; Myroniuk, Khrystyna; Інститут архітектурного будівництва, Кошице, Словаччина; Technical University of Kosice, Slovakia; Lviv Polytechnic National UniversityПобутовий сектор та промисловість в Україні сьогодні надзвичайно енерговитратні, а це означає, що потрібно докласти максимальних зусиль для зменшення витрат енергії, не погіршуючи якості послуг. Система гарячого водопостачання використовує значну частину теплової енергії та потребує не меншої уваги, ніж система опалення або вентиляції. Величина втрат теплоти в підсистемі розподілення гарячої води має велике значення для енергоспоживання будівель. Взимку частина цієї теплоти використовується для опалення приміщень, влітку ця енергія не використовується з користю та вважається втраченою. У роботі розглянуто вплив швидкості води в трубі на загальні втрати теплоти в теплоізольованій підсистемі розподілення гарячої води. Для цього проаналізовано процес передавання тепла від води до стінки труби та від стінки до навколишнього середовища. У роботі детально розглянуто на теплопередачу від води до стінки труби, а також витрату води в трубі та її частку в загальних втратах теплоти підсистемою розподілення гарячої води. Дані подано у табличній та графічній формах. Отримано графік залежності величини тепловтрат від температури та швидкості руху гарячої води. Температура води змінювалася від 10 до 60 °С, а швидкість води від 0,1 до 2,0 м/с, що дало змогу проаналізувати величину тепловтрат при різних вихідних даних. Крім того, визначено величину теплового потоку через стінку труби за різних діаметрів ізольованої сталевої труби. Діаметр трубопроводу змінювався від 15 до 32 мм. В результаті досліджень одержано дані, згідно з якими можна стверджувати, що теплопередача від води до стінки труби незначна і цією величиною можна знехтувати.Item The use of agricultural biomass as a source for biogas production(Видавництво Львівської політехніки, 2021-06-06) Фурдас, Ю. В.; Козак, Х. Р.; Савченко, О. О.; Луник, М. В.; Генсецький, М. П.; Furdas, Yuriy; Kozak, Khrystyna; Savchenko, Olena; Lunyk, Mariia; Hensetskyi, Mykola; Національний університет “Львівська політехніка”; Техніко-економічний коледж Національного університету “Львівська політехніка”; Lviv Polytechnic National University; Technical and Economic College Lviv Polytechnic National UniversityУкраїна має значні обсяги земельних ресурсів для сільського господарства та здатна забезпечити своє населення не тільки їжею, але і сировиною для біоенергетики. Як сировина в біоенергетиці можуть бути використані відходи та сільськогосподарські залишки, які утворюються під час збирання сільськогосподарських культур та в процесі їх переробки, зокрема солома злакових культур, зернобобових культур, насіння кукурудзи та соняшнику, лушпиння соняшнику, м’якоть цукрових буряків тощо. Для енергетичних потреб біомасу безпосередньо спалюють або переробляють на тверде, рідке або газоподібне паливо. Під час виробництва газоподібного палива із сільськогосподарських відходів утворюється не тільки джерело енергії – біогаз, але й високоякісні добрива, які можна використовувати для власних потреб чи продавати фермерським господарствам. Процес виробництва біогазу відбувається у біореакторах, конструкції яких доволі різноманітні й відрізняються за формою, матеріалом, способами змішування та нагрівання біомаси, обсягом переробки сировини. У цій статті для виробництва біогазу із сільськогосподарської біомаси запропоновано конструкцію біореактора, що дає змогу ефективно змішувати та прогрівати органічну сировину для підвищення ефективності роботи біореактора та збільшення виходу біогазу. Аналітичні дослідження показали, що кількість виробленого біогазу залежить від виду сировини, її органічної та вологісної складової, а також часу бродіння. Найбільшу кількість виробленого біогазу отримано протягом 10 днів з дати завантаження органічної біомаси. Встановлено, що максимальна кількість біогазу утворюється із трав’яного та зернового силосу, вихід біопалива становить 1,76 м 3. Найменша кількість біогазу утворюється з ріпакового силосу – 0,33 м3, а також силосного бурякового листя – 0,43 м3.Item Thermal modernization of heating system by using the solar roof(Видавництво Львівської політехніки, 2020-02-10) Возняк, О. Т.; Касинець, М. Є.; Козак, Х. Р.; Сухолова, І. Є.; Довбуш, О. М.; Voznyak, Orest; Kasynets, Mariana; Kozak, Khrystyna; Sukholova, Iryna; Dovbush, Oleksandr; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityВажливим пріоритетним завданням економічної політики України є дбайливе використання енергоносіїв. У країні проводиться широкомасштабна політика енергоощадності, а завдання енергоощадності є комплексними та охоплюють як законодавчу базу, так і технічні інновації. Одним з ефективних способів зменшення енергозатрат на потреби народного господарства є проведення термомодернізація систем теплопостачання. Наведено економічні показники термореноваційних заходів при реконструкції системи опалення житлового будинку. Порівнювали такі термореноваційні заходи: встановлення геліопокрівлі, реконструкція системи опалення, встановлення системи сонячного повітряного опалення. Метою роботи є встановлення економічних показників заходів теплового оновлення при реконструкції системи опалення багатоквартирного будинку з використанням сонячної покрівлі за різних значень індексу знижок. Використання сучасних методів оцінювання економічної ефективності теплової модернізації враховується в новітній концепції економічних розрахунків, зокрема рекомендаціями Організації Об’єднаних Націй із промислового розвитку. Енергетичний аудит системи опалення проводили з урахуванням різних значень індексу знижок r. Було оптимізовано варіанти теплового оновлення з урахуванням різних значень індексу знижок. Використання сонячної покрівлі дає можливість проектувати ефективні енергоощадні системи опалення в будинках. Сонячна система нагрівання повітря має високу цінність простого часу окупності, але вона корисна як сукупний варіант економії енергії та забезпечує економічний ефект.