Геодезія, картографія і аерофотознімання

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2147

Міжвідомчий науково-технічний збірник. ISSN 0130-1039

News

Геодезія, картографія і аерофотознімання. Міжвідомчий науково-технічний збірник. ISSN 0130-1039. Видається з 1964 року.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Analysis of the residual distortion and forward motion influence on the accuracy of spatial coordinates determination based on UAV survey
    (Видавництво Львівської політехніки, 2023-02-28) Глотов, Володимир; Бяла, Мирослава; Шило, Євгеній; Hlotov, Volodymyr; Biala, Myroslava; Shylo, Yevhenii; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Метою роботи є дослідження цифрової неметричної камери Canon EOS 5D Mark III, що встановлюється на октокоптері DJI S1000 на предмет точності визначення просторових координат за знімками; виявлення та аналіз джерел похибок, що впливають на точність стереофотограмметричного знімання камерою Canon EOS 5D Mark III. Виконано стереофотограмметричне знімання та аерознімання з октокоптера DJI S1000 полігону маркованих точок, що слугували джерелом отримання даних для побудови стереомоделей з їх подальшим опрацюванням в програмному пакеті “Delta 2”. Сформовано каталоги просторових координат маркованих точок досліджуваних полігонів із вимірювань електронним тахеометром Trimble M3 DR і зі стереомоделей, обчислено різниці та СКП визначення просторових координат точок на знімках. Зважаючи на специфіку розміщення маркованих точок на досліджуваних полігонах, також обчислено вплив рельєфу місцевості та лінійного зсуву зображення на точність даних аерознімання. Отримані результати дослідження підтверджують наявність залишкової дисторсії оптичної системи цифрової камери Canon EOS 5D Mark III, що зумовлює необхідність проведення калібрування камери для підвищення точності отриманих знімків задля подальшого використання з метою картографування, моніторингу геоморфологічних процесів та явищ, створення ЦМР тощо. Також виявлено вплив лінійних зсувів та похибок, спричинених перепадом висот місцевості знімання, на точність побудови стереомоделей. Запропоновано конфігурацію та створено полігон маркованих контрольних точок на місцевості для проведення калібрування цифрової неметричної камери в умовах максимально наближених до умов знімання, що, з огляду на проаналізовані літературні джерела, є ефективнішим за калібрування в лабораторії.
  • Thumbnail Image
    Item
    Визначення похибки ЦМР ортотрансформування аерознімків, отриманих із БПЛА на гірську локальну частини смт. Східниця
    (Видавництво Львівської політехніки, 2019-03-12) Четверіков, Б. В.; Бабій, Л. В.; Процик, М. Т.; Ільків, Т. Я.; Chetverikov, B.; Babiy, L.; Protsyk, M.; Ilkiv, T.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Мета роботи – оцінити величину похибки ортотрансформування аерознімків по висоті, отриманих з безпілотного літального апарату на гірську ділянку смт. Східниця за допомогою додаткової сітки точок ГНСС-знімання. Завдання роботи – проаналізувати різниці висот точок, отриманих за допомогою карти висот із БПЛА і даних ГНСС-знімання. Оцінити розходження реальних координат опорних точок з їх координатами на ортофотоплані. Методика. Запропоновано методику визначення реальної величини висотної похибки ортотрансформування аерознімків, отриманих із БПЛА на гірську місцевість. Створено локальний тестовий майданчик на горі в смт. Східниця розміром приблизно 70´60 метрів, шо входить у створене загальне аерознімання. Тут виконано додаткове ГНСС-знімання і створено мережу точок із координатами через кожен метр. Отриманий ортотрансформований знімок з картою висот за даними аерознімання всієї Східниці й результатами ГНСС-знімання через кожні 50 метрів відкрито в програмному забезпеченні ArcGIS. На аерознімок нанесено шар точок локальної ділянки і порівняно з координатими тих самих точок, отриманих із карти висот. Результати. Порівнюючи висотні показники 87 точок на схилі гори в смт. Східниця, отримані за допомогою ГНСС-знімання, з висотними показниками тих самих точок, взятих із карти висот, створеної за даними аерознімання з безпілотного літального апарата, визначено, що висотні показники точок не дуже відрізняються. Середня квадратична похибка становить 0,39 м. Наукова новизна. Запропоновано методику порівняння висотних показників точок місцевості, отриманих різними методами для визначення величини похибки ортотрансформування аерознімків, отриманих з БПЛА на гірську локальну ділянку смт. Східниця. Практична значущість. Отримані результати величини похибки ортотрансформування аерознімків, отриманих з безпілотних літальних апаратів на окрему гірську частину смт. Східниця, вказують на те, що ортотрансформування аерознімків окремих гірських територій з БПЛА є в зоні допуску.
  • Thumbnail Image
    Item
    Аналіз результатів для створення ортофотопланів та цифрових моделей рельєфу із застосуванням БПЛА TRIMBLE UX-5
    (Видавництво Львівської політехніки, 2015) Вовк, А.; Глотов, В.; Гуніна, А.; Маліцький, А.; Третяк, К.; Церклевич, А.
    Метою цієї роботи є аналіз та дослідження можливостей безпілотних літальних апаратів (БПЛА) Trimble UX5 для створення ортофотопланів і цифрових моделей рельєфу (ЦМР), а також виявлення і усунення можливих недоліків під час аерознімання та опрацювання аерознімків. Методика. Перед початком аерознімальних робіт проводилось рекогносцирування місцевості. Для кобрирування та глісади обирали майданчики, які мали відповідні площадні параметри, вказані у технічних характеристиках БПЛА. Для підготовчих проектно-розрахункових робіт використовувалось програмне забезпечення Trimble Access Aerial Imaging, яке інсталювалось у захищений польовий контролер Trimble Tablet, що застосовується для управління UX5. Аерознімання з БПЛА виконувалось цифровою камерою SONY NEX 5R. Оскільки на БПЛА UX5 не передбачено встановлення двохчастотного GPS-приймача для отримування у польоті значень центрів проекцій, то зроблено розряджену планово-висотну прив’язку (ПВП) розпізнавальних знаків. Для оперативного створення ортофотопланів застосовували фотограмметричний модуль Trimble Business Center Photogrammetry Module фірми Trimble, за допомогою якого створювали хмару точок, трикутну нерегулярну сітку (TIN-модель) і план з відображенням горизонталей місцевості, над якою проводилося аерознімання. Для підтвердження можливості застосування цифрового стереофотограмметричного методу розраховано апріорну оцінку точності просторових координат місцевості. Для оцінювання точності на місцевості визначено контрольні точки на трьох експериментальних ділянках. Координати контрольних точок визначали під час проведення ПВП GPS-приймачами Trimble R7 у режимі RTK. Після створення ортофотопланів на них виміряні координати вищеозначених контрольних точок і обчислено середні квадратичні похибки (СКП) відносно координат, виміряних на місцевості. Результати. За аерозніманням, проведеним з висот 150 м, 200 м та 300 м, за отриманими зображеннями, були обчислені СКП положення контурних точок місцевості, які підтверджують можливість застосування літаків моделі Trimble UX5 для складання топографічних планів у масштабах 1:500, 1:1000 та 1:2000 з перерізом горизонталей 0,5-1 м для цих масштабів. Наукова новизна. На підставі критичного аналізу конструкторських та експлуатаційних особливостей БПЛА Trimble UX5 розроблено технологічну схему оцінки придатності БПЛА для аерознімального процесу як за кількісними, так і за якісними параметрами. Це дасть можливість у подальшому оцінювати будь-які моделі БПЛА стосовно застосування їх у цифровому стереофотограмметричному методі створення великомасштабних ортофо¬топланів та топографічних планів. Практична значущість. Застосування БПЛА Trimble UX5 дає можливість знімати території сільської місцевості, отримуючи необхідну точність для складання великомасштабних топографічних і кадастрових планів під час застосування цифрового стереофотограмметричного методу, що дає змогу значно здешевити процес створення вищеозначених планів. Целью данной работы является анализ и исследование возможностей беспилотного летательного аппарата (БПЛА) Trimble UX5 для создания ортофотопланов и цифровых моделей рельефа (ЦМР), а также выявления и устранения возможных недостатков в процессе аэросъемки и обработки аэроснимков. Методика. Перед началом аэросъемочных работ проводилось рекогносцировка местности. Для кабрирования и глиссады выбирались площадки, которые имели соответствующие площадные параметры, указанные в технических характеристиках БПЛА. Для подготовительных проектно-расчетных работ использовалось программное обеспечение Trimble Access Aerial Imaging, которое инсталировалось в защищенный полевой контроллер Trimble Tablet, который применяется для управления UX5. Аэросъемка с БПЛА выполнялась цифровой камерой SONY NEX 5R. Поскольку на БПЛА UX5 не предусмотрено установление двухчастотного GPS-приемника для получения в полете значений центров проекций, то было сделано разреженную планово¬высотную привязку (ПВП) опознавательных знаков. Для оперативного создания ортофотопланов применяли фотограмметрический модуль Trimble Business Center Photogrammetry Module, фирмы Trimble, с помощью которого можно создать облако точек, треугольную нерегулярную сетку (TIN-модель) и план с отображением горизонталей местности над которой проводилась аэросъемка. Для подтверждения возможности применения цифрового стереофотограмметрического метода рассчитано априорную оценку точности пространственных координат местности. Для проведения оценки точности определялись контрольные точки на трех экспериментальных участках. Координаты точек определялись при проведении ПВП GPS - приемниками Trimble R7 в режиме RTK. После создания ортофотопланов на них были измерены координаты вышеуказанных точек и вычислено средние квадратичные погрешности (СКП) относительно координат измеренных на местности. Результаты. По аэросъемке проведенной с высот 150 м, 200 м и 300 м по полученным изображениями были вычислены СКП положения контурных точек местности, которые подтверждают возможность применения самолетов модели Trimble UX5 для составления топографических планов в масштабах 1: 500, 1: 1000 и 1: 2000 с сечением горизонталей 0,5-1 м для этих масштабов. Научная новизна. На основании критического анализа конструкторских и эксплуатационных особенностей БПЛА Trimble UX5 разработана технологическая схема оценки пригодности БПЛА для аэросъёмочного процесса как по количественным так и по качественным параметрам. Это позволит в дальнейшем оценивать любые модели БПЛА относительно их применения в цифровом стереофотограмметрическом методе создания крупномасштабных ортофотопланов и топографических планов. Практическая значимость. Применение БПЛА Trimble UX5 позволяет снимать территории, получая необходимую точность для составления крупномасштабных топографических и кадастровых планов с применением цифрового стереофотограмметрического метода, что позволяет значительно удешевить процесс создания вышеуказанных планов. The purpose of this paper is to analysis and research capabilities of unmanned aerial vehicle (UAV) Trimble UX5 to create orthophotomap and digital elevation models (DEM), as well as identifying and addressing possible shortcomings in the aerial survey and processing of aerial photographs. Methods. Before starting aerosurveying conducted reconnaissance of the area. For nose-up and glide-path elected corresponding surface area on the ground had areal options on listed specifications for the UAV, and satisfy the conditions for launching and landing UAV.For preliminary design and calculation works software was used Trimble Access Aerial Imaging, which install a protected field controller Trimble Tablet, which is used to control UX5.UAV aerial survey was carried out with a digital camera SONY NEX 5R.Since the UAV UX5 stipulated the establishment of two-frequency GPS- receiver for in-flight values of projection centers, it was done discharged horizontal and vertical tie-in markings.For operative creation of orthophotomap used photogrammetric module Trimble Business Center Photogrammetry Module, the company Trimble, with which you can create a point cloud, triangular irregular grids (TIN- model) and plan to display contour lines, terrain over was carried out aerial aerosurveying.To confirm the possibility of using digital stereophotogrammetric method calculated apriori estimate of the accuracy of the spatial coordinates of the area. To assess the accuracy of the terrain defined checkpoints at three pilot sites. Coordinates of points determined during VFR GPS - receivers Trimble R7 mode RTK. After creating orthophotomap they measured the coordinates of the above points and calculated root-mean-square error measured relative to the coordinates on the ground. Results. For aerial survey conducted with a height of 150 m, 200 m and 300 m on the received images were calculated mean square error provisions terrain contour points, which confirm the possibility of using aircraft model Trimble UX5 to produce topographic maps at scales of 1: 500, 1: 1000 and 1: 2000 section 0.5-1 m contour for these scales and 1 m for the third scale. The scientific novelty. Based on a critical analysis of the design and operational features Trimble UX5 UAV developed technological scheme to evaluate the fitness of UAV aerosurveying both quantitative and qualitative parameters. This will enable further evaluate any models UAV regarding their use in digital stereofotohrammetryc method of creating large-scale orthophotomap and topographical plans. The practical significance The use of UAVs Trimble UX5 allows you to take difficult territory, with the required precision to produce large-scale topographic and cadastral plans in the application of digital stereophotogrammetric method that can significantly reduce the cost of the process of creating the above plans.
ISSN 0130-1039