Інформаційні системи та мережі

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2105

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Самоорганізація стратегій у грі переміщення агентів
    (Видавництво Львівської політехніки, 2021-03-01) Кравець, Петро; Kravets, Petro; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено стохастичну ігрову модель самоорганізації стратегій стохастичної гри мобільних агентів у вигляді циклічних поведінкових патернів, які складаються із узгоджених стратегій переміщення агентів у обмеженому дискретному просторі. Поведінковий патерн багатоагентної системи є візуалізованою формою впорядкованого переміщення агентів, яка виникає із їх початкового хаотичного руху в ході навчання стохастичної гри. Мобільність агентів багатокрокової стохастичної гри забезпечено тим, що у дискретні моменти часу вони випадково, одночасно і незалежно вибирають власну чисту стратегію переміщення в одному із можливих напрямків. Поточні платежі гравців визначено як функції програшів, залежні від стратегій сусідніх гравців. Ці функції сформовано зі штрафу за нерівномірність розміщення агентів у обмеженому дискретному просторі та штрафу за зіткнення під час переміщення агентів. Випадковий вибір чистих стратегій гравців спрямовано на мінімізацію їхніх функцій середніх програшів. Генерування послідовностей чистих стратегій виконано за дискретним розподілом, побудованим на основі векторів змішаних стратегій. Елементи векторів змішаних стратегій є умовними імовірностями вибору відповідних чистих стратегій переміщення. Змішані стратегії змінюються у часі, адаптивно враховуючи значення поточних програшів. Цим забезпечено зростання імовірностей вибору тих чистих стратегій, які приводять до зменшення функцій середніх програшів. Динаміку векторів змішаних стратегій визначено за марковським рекурентним методом, для побудови якого виконано стохастичну апроксимацію модифікованої умови доповняльної нежорсткості, яка справедлива у точках рівноваги за Нешем, та застосовано оператор проєктування на розширюваний одиничний епсилон-симплекс. Збіжність рекурентного ігрового методу забезпечено дотриманням фундаментальних умов та обмежень стохастичної апроксимації. Стохастична гра розпочинається із ненавчених змішаних стратегій, які задають хаотичну картину переміщення агентів. У ході навчання стохастичної гри вектори змішаних стратегій цілеспрямовано змінюються так, щоб забезпечити впорядковане безконфлікне переміщення агентів. У результаті комп’ютерного моделювання стохастичної гри отримано циклічні патерни самоорганізації мобільних агентів на поверхні дискретного тора та у межах прямокутної області на площині. Достовірність експериментальних досліджень підтверджено подібністю отриманих патернів переміщення агентів для різних послідовностей випадкових величин. Результати дослідження запропоновано використати на практиці для побудови розподілених систем із елементами самоорганізації, розв’язування різноманітних потокових і транспортних задач та колективного прийняття рішень в умовах невизначеності.
  • Thumbnail Image
    Item
    Патерни самоорганізації стратегій у грі мобільних агентів
    (Видавництво Львівської політехніки, 2020-02-24) Кравець, Петро; Юринець, Ростислав; Кісь, Ярослав; Kravets, Petro; Yurynets, Rostyslav; Kis, Yaroslav; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розглянуто актуальну проблему самоорганізації стратегій стохастичної гри багатоагентної системи. Проявом самоорганізації є формування скоординованих поведінкових патернів групи мобільних агентів, наділених здатністю переміщуватися в обмеженому дискретному просторі. Агент – це автономний об’єкт, який може взаємодіяти із навколишнім середовищем, іншими агентами і людиною для вибору варіантів рішень. Багатоагентна система складається із групи агентів, які виконують спільну роботу, співпрацюючи між собою у межах локальних підмножин агентів. Поведінковий патерн багатоагентної системи – це візуалізована форма впорядкованого переміщення агентів, яка виникає із їх початкового хаотичного руху під час навчання стохастичної гри. Повторювальна стохастична гра полягає у реалізації керованого випадкового процесу вибору варіантів рішень. Для цього ігрові агенти випадково, одночасно і незалежно вибирають одну із власних чистих стратегій у дискретні моменти часу. Чисті стратегії гравців визначають напрямки переміщення у двовимірному просторі: вперед, назад, направо, наліво. Після завершення вибору усіх стратегій обчислюють поточні програші гравців. Для формування впорядкованого переміщення кожен агент повинен повторювати дії сусідніх агентів. Тоді поточні програші визначаються індикаторною функцією подібності стратегій сусідніх гравців. Обчислені поточні програші використовують для адаптивного перерахунку змішаних стратегій гравців. Імовірність вибору чистої стратегії збільшується, якщо її реалізація призвела до зменшення поточного програшу. Під час повторювальної гри агенти сформують вектори змішаних стратегій, які мінімізують функції середніх програшів гравців. Для розв'язування ігрової задачі побудови патернів самоорганізації багатоагентної системи використано адаптивний марківський рекурентний метод, побудований на основі стохастичної апроксимації модифікованої умови доповняльної нежорсткості, яка справедлива у точках рівноваги за Нешем. Для нормування елементів векторів змішаних стратегій застосовано операцію їх проектування на одиничний розширюваний епсілон-симплекс. Збіжність ігрового методу забезпечується дотриманням фундаментальних умов та обмежень стохастичної оптимізації. Комп'ютерне моделювання підтвердило можливість застосування моделі стохастичної гри для побудови патернів самоорганізації багатоагентної системи. Форма отриманих патернів залежить від способу локального орієнтування мобільних агентів. Під час комп’ютерного експерименту отримано вихрові та лінійні патерни переміщення агентів. Достовірність експериментальних досліджень підтверджується подібністю отриманих результатів для різних послідовностей випадкових величин. Результати цієї роботи доцільно застосувати для вивчення патернів колективної поведінки агентів для глибшого розуміння процесів самоорганізації природних систем та для побудови розподілених систем прийняття рішень.