Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Analysis of ventilation in the selected lecture room: case study
    (Видавництво Львівської політехніки, 2023-02-28) Капало, П.; Баргловський, Л.; Адамскі, М.; Kapalo, P.; Bargłowski, L.; Adamski, M.; Кошицький технічний університет; Білостоцький технічний університет; Technical University of Kosice; Bialystok University of Technology
    Діти та шкільна молодь проводять більше годин на день у класах і, залежно від кількості людей, піддаються впливу погіршення якості повітря в приміщеннях. Різноманітні дослідження, які спостерігають за умовами внутрішнього середовища, вказують на необхідність збільшення рівня вентиляції в класах. Чинні стандарти та рекомендації щодо вентиляції в шкільних класах здебільшого зосереджуються на сприйнятій якості повітря, тоді як доступна вентиляція в багатьох школах вже не відповідає цим критеріям, що призводить до поганої якості повітря в приміщенні. У шкільних класах потрібні нові способи вентиляції, де дизайн має бути перенесений з комфорту на здоров’я. Документально визначено необхідну об’ємну витрату повітря вентиляційної установки для провітрювання обраної аудиторії. Коротко охарактеризовано законодавчі вимоги, що діють у Словаччині та Польщі. Особливу увагу було приділено постановам Міністерства охорони здоров’я, Міністерства навколишнього середовища, Міністерства транспорту та будівництва Словацької Республіки та постановам Міністерства освіти та спорту, Міністерства інфраструктури та європейським стандартам. Задокументовано також експериментальне вимірювання, виконане в аудиторії. Отримані значення об’ємної витрати повітря, необхідної для вентиляції аудиторії, розраховані відповідно до вимог законодавства, порівнюються зі значенням, розрахованим на основі виміряного ходу концентрації вуглекислого газу.
  • Thumbnail Image
    Item
    Air quality monitoring in a selected classroom
    (Видавництво Львівської політехніки, 2022-03-03) Капало, П.; Возняк, О. Т.; Желих, В. М.; Клименко, Г. М.; Миронюк, Х. В.; Kapalo, Peter; Voznyak, Orest; Zhelykh, Vasyl; Klymenko, Hanna; Myroniuk, Khrystyna; Технічний університет Кошице; Національний університет “Львівська політехніка”; Technical University of Kosice; Lviv Polytechnic National University
    Під час дослідження “Експериментальне визначення оптимальної кількості повітря у вибраному приміщенні в Україні на основі вимірювань концентрації вуглекислого газу” було проведено експериментальне вимірювання у вибраній навчальній аудиторії України. Мета експериментального вимірювання – визначити зміну температури повітря, відносної вологості та концентрації вуглекислого газу під час навчального процесу. Потім за кривими концентрації вуглекислого газу можна розрахувати необхідну інтенсивність вентиляції у приміщенні. У статті викладено результати вимірювання температури повітря та концентрації вуглекислого газу в приміщенні, а також визначення реакції людей у приміщенні на якість повітря. Низка досліджень підтверджують, що якість повітря у навчальних аудиторіях істотно впливає на здоров’я та успішність учнів і вчителів. Відповідно до Указу 527/2007 [1], приміщення, які використовують для навчання дітей та молоді, повинні опалюватися так, щоб забезпечити температуру не менше ніж 20 °С у приміщеннях, де учні працюють чотири години і більше. Для забезпечення повітрообміну від 20 до 30 м3/год на учня необхідна вентиляція. Згідно з українським стандартом ДБН V.2.2-3: 2018, мінімальна температура повітря – 18 °С і повітрообмін 20 м3/год на одну людину. Можна припустити, що якби в класі був прилад для вимірювання концентрації вуглекислого газу, який би подавав акустичний сигнал після досягнення значення 1000 ppm, то приміщення почали би провітрювати. Однак часто люди в класі настільки зайняті навчальним процесом, що помічають погіршення якості повітря лише після того, як покинуть кімнату, вийдуть у коридор.
  • Thumbnail Image
    Item
    The analysis of water speed influence in hot-water distribution system on the amount of heat loss
    (Видавництво Львівської політехніки, 2021-06-06) Капало, П.; Козак, Х. Р.; Миронюк, Х. В.; Kapalo, Peter; Kozak, Khrystyna; Myroniuk, Khrystyna; Інститут архітектурного будівництва, Кошице, Словаччина; Technical University of Kosice, Slovakia; Lviv Polytechnic National University
    Побутовий сектор та промисловість в Україні сьогодні надзвичайно енерговитратні, а це означає, що потрібно докласти максимальних зусиль для зменшення витрат енергії, не погіршуючи якості послуг. Система гарячого водопостачання використовує значну частину теплової енергії та потребує не меншої уваги, ніж система опалення або вентиляції. Величина втрат теплоти в підсистемі розподілення гарячої води має велике значення для енергоспоживання будівель. Взимку частина цієї теплоти використовується для опалення приміщень, влітку ця енергія не використовується з користю та вважається втраченою. У роботі розглянуто вплив швидкості води в трубі на загальні втрати теплоти в теплоізольованій підсистемі розподілення гарячої води. Для цього проаналізовано процес передавання тепла від води до стінки труби та від стінки до навколишнього середовища. У роботі детально розглянуто на теплопередачу від води до стінки труби, а також витрату води в трубі та її частку в загальних втратах теплоти підсистемою розподілення гарячої води. Дані подано у табличній та графічній формах. Отримано графік залежності величини тепловтрат від температури та швидкості руху гарячої води. Температура води змінювалася від 10 до 60 °С, а швидкість води від 0,1 до 2,0 м/с, що дало змогу проаналізувати величину тепловтрат при різних вихідних даних. Крім того, визначено величину теплового потоку через стінку труби за різних діаметрів ізольованої сталевої труби. Діаметр трубопроводу змінювався від 15 до 32 мм. В результаті досліджень одержано дані, згідно з якими можна стверджувати, що теплопередача від води до стінки труби незначна і цією величиною можна знехтувати.
  • Thumbnail Image
    Item
    Investigation of the return flow at the air distribution by swirl and flat laying air jets in small-sized premises
    (Видавництво Львівської політехніки, 2020-02-10) Возняк, О. Т.; Адамскі, М.; Капало, П.; Довбуш, О. М.; Сухолова, І. Є.; Voznyak, Orest; Adamski, Mariusz; Kapalo, Peter; Dovbush, Oleksandr; Sukholova, Iryna; Національний університет “Львівська політехніка”; Політехніка Бялостоцька; Кошицький технічний університет; LvivPolytechnicNationalUniversity; Politechnika Białostocka; Technical University of Košice
    Наведено результати експериментальних досліджень зворотного потоку при розподілі повітря плоскими струменями. Наведено графічні та аналітичні залежності. Результатами досліджень доказано високу ефективність запропонованої схеми розподілу повітря в технологічних малогабаритних приміщеннях. Метою роботи є вивчення характеру розповсюдження вихрових та настильних струменів у обмеженому просторі виробничого приміщення малої висоти з наявністю в ньому технологічного обладнання та обслуговуючого персоналу, виявлення закономірностей розвитку повітряного припливного струменя у зворотному потоці та обґрунтування методики розрахунку. Встановлено кількісний опис характеристик та закономірностей розвитку вихрових та плоских настильних стиснених струменів у зворотному потоці. Отримано розрахункові залежності для визначення параметрів вихрових та настильних плоских струменів у зворотному потоці. Обґрунтовано, що ефективність застосування вихрових та плоских настильних струменів для подачі повітря в робочу зону технологічних приміщень є високою. Отримані результати дають змогу обчислити початкову швидкість стисненого потоку вихрового та припливного плоских настильних струменів у невеликих за розмірами виробничих приміщеннях з наявністю технологічного обладнання та обслуговуючого персоналу та визначити геометричні параметри пристрою розподілу повітря. Застосування розподілу повітря за ефектом настилання вихрових та плоских повітряних струменів дозволяє значно підвищити критерії продуктивності розподілу повітря при подачі великої кількості повітря до технологічних приміщень і тим самим зменшити витрату матеріалів у вентиляційній системі.
  • Thumbnail Image
    Item
    Evaluating the state of sanitary and hygienic conditions in ventilated rooms
    (Видавництво Львівської політехніки, 2019-02-26) Капало, П.; Клименко, Г.; Возняк, О.; Желих, В.; Адамскі, М.; Kapalo, P.; Klymenko, H.; Voznyak, O.; Zhelykh, V.; Adamski, M.; Технічний університет Кошице; Національний університет “Львівська політехніка”; Технічний університет Білостока; Technical University of Kosice; Lviv Polytechnic National University; Bialystok University of Technology
    Сьогодні надзвичайно важливою залишається проблема енергоощадності. Сучасні будівельні технології дають змогу створювати будинки з мінімальним енергоспоживанням, використовуючи енергоефективні зовнішні захищення, зокрема пластикові вікна. Це призводить до зниження тепловтрат приміщення, але загрожує зменшенням необхідного повітрообміну. Цю статтю підготовлено в Національному університеті “Львівська політехніка” у рамках проекту VEGA 1/0697/17 спільно з науковцями Технічного університету міста Кошице (Словаччина) та Політехніки Білостоцької міста Білосток (Польща). Досліджували стан санітарно-гігєнічних умов у приміщенні навчальної аудиторії учбового корпусу під час проведення занять. У приміщенні аудиторії, об’єм якої становить 127 м3, вентилювання передбачено: приплив повітря – природний неорганізований (відкриванням вікон), витяжка – природна, оргінізована. На початку та в кінці кожного заняття заміряли параметри повітряного середовища аудитрії, зокрема: його температуру, відносну вологість та вміст вуглекислого газу. Дослідження проводили в два етапи. Результати досліджень, наведені на графіках, вказують на залежність зміни параметрів повітряного середовища приміщення аудиторії від ефективності вентилювання. На першому етапі в приміщенні аудиторії не було припливної природної вентиляції (приміщення в перервах між заняттями не провітрювали). Як показали результати досліджень, температура та відносна вологість повітря залишились у межах допустимих норм, а концентрація вуглекислого газу значно перевищувала нормативні значення. Тому для підтримання нормативних параметрів повітряного середовища аудиторії запропоновано встановити припливно- витяжну вентиляційну установку. На другому етапі під час перерв приміщення вентилювали. При цьому було встановлено, що концентрація вуглекислого газу зменшилась на 33 %. Отже, за такого вентилювання навчальної аудиторії навіть 10- хвилинне провітрювання істотно впливає на якість повітряного середовища навчальної аудиторії.
  • Thumbnail Image
    Item
    Monitoring of indoor air in a passenger railway wagons
    (Видавництво Львівської політехніки, 2018-02-26) Капало, П.; Миронюк, Х.; Домніта, Ф.; Бакотю, С.; Kapalo, P.; Myroniuk, Kh.; Domnita, F.; Bacotiu, C.; Технічний університет Кошице (Словаччина); Національний університет “Львівська політехніка”; Технічний університет м. Клуж-Напока (Румунія); Technical University of Kosice, Slovakia; Lviv Polytechnic National University; Technical University of Cluj-Napoca, Romania
    У будинках з низьким енергоспоживанням та пасивних будинках близько 80 % загальної енергії споживається для підігрівання або охолодження припливного повітря залежно від пори року. Це зумовлено переважно підвищенням рівня теплоізоляції та герметичності таких будинків. Насправді сучасні тенденції будівництва таких споруд полягають у тому, щоб утримувати вікна закритими, подаючи натомість повітря за допомогою вентиляційного устаткування. Такою є ситуація в деяких транспортних засобах, а саме в поїздах, які оснащені кондиціонером. Вентилюють пасажирський простір переважно механічним способом і в момент зупинки поїзда – природною вентиляцією відкриванням дверей вагонів, крім того, там необхідно мінімізувати витоки тепла. У статті наведено результати вимірювань концентрації вуглекислого газу в залізничних пасажирських вагонах. Було досліджено повітряне середовище у двох типах залізничних пасажирських вагонів: перший тип був “відкритим” вагоном, який мав два ряди сидінь з обидвох боків і центральний коридор між ними, а другий – “закритий” вагон з бічним коридором, що з’єднує окремі купе по довжині вагона. Вимірюючи концентрацію вуглекислого газу, можна визначити, чи постачається достатня кількість припливного повітря у простір, куди пасажири не мають можливості втрутитися (у випадку повністю закритих вікон). За результатами досліджень внутрішнього середовища в пасажирських вагонах, де було виявлено концентрацію CO2 та враховуючи рівень температури повітря у вагонах, можна стверджувати, що якість повітря була незадовільною. У обох контрольованих вагонах концентрація CO2 була більшою, ніж 1000 ppm. Пасажири в купе вагонів намагалися поліпшити стан повітря, відкриваючи двері від купе до коридору, навіть за рахунок втрати приватності. Це свідчить про те, що пасажири відчули симптоми втоми та погіршення якості повітря
  • Thumbnail Image
    Item
    Analysis of the ventilation air flow rate for renewal of windows
    (Видавництво Львівської політехніки, 2018-02-26) Капало, П.; Kapalo, P.; Технічний університет в Кошице, Словаччина, Інститут архітектурної інженерії; Technical University of Kosice, Slovakia, Institute of Architectural Engineering
    За рахунок заміни старих дерев’яних вікон на нові пластикові вікна в старих будинках ми досягаємо масового зниження тепловтрат у будівлі. Нові вікна характеризуються кращою герметичністю. Питання полягає в тому, наскільки є можливим зменшити неконтрольовану вентиляцію. В статті наведено експериментальні дослідження якості внутрішнього повітря в кімнаті, які проводилися в два етапи. На першому етапі в кімнаті було встановлене 55-річне старе дерев’яне вікно. На другому етапі, в тій самій кімнаті було встановлене нове пластикове вікно. З експериментальних вимірювань якості внутрішнього повітря є обчислена інтенсивність вентиляції – інфільтрація. Була взаємно порівняна результуюча інтенсивність вентиляції. Метою статті є знайти, на основі експериментальних вимірювань, різницю в об’ємі потоку повітря в кімнаті шляхом інфільтрації, що спричинюється заміною старого дерев’яного вікна на нове пластикове вікно з ізоляційним подвійним заскленням. Відповідно до аналізу, можна стверджувати, що, замінивши старе дерев'яне вікно в кімнаті новим пластиковим вікном, об'єм потоку повітря, викликаний інфільтрацією, зменшився приблизно на 73 %. Загальні втрати тепла у вікні зменшились приблизно на 46 %.