Solving non-linear functional equations by relaxed new iterative method

dc.citation.epage429
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та обчислення
dc.citation.spage421
dc.citation.volume11
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationSultan Moulay Slimane University
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.authorРофір, К.
dc.contributor.authorРадід, А.
dc.contributor.authorRhofir, K.
dc.contributor.authorRadid, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T08:10:33Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДля розв’язування різноманітних рівнянь виду v=f + N(v), запропоновано В. Дафтардар–Геджі та ін. новий ітераційний метод і новий алгоритм [Daftardar–Gejji V., Jafari H. J. Math. Anal. Appl. 316 (2), 753–763 (2006); Kumar M., Jhinga A., Daftardar–Gejji V. Int. J. Appl. Comp. Math. 6 (2), 26 (2020)], які використовуються успішно і точно. Наша мета в цій статті полягає в тому, щоб подати послаблений новий ітеративний метод шляхом введення контрольованого параметра ω для розширення цих методів. За значеннями параметра ω обговорюємо та здійснюємо аналіз збіжності. Запропонований алгоритм є швидким, ефективним і простим у реалізації порівняно з існуючим. Численні нелінійні рівняння розв’язуються, щоб показати застосовність та ефективність алгоритму порівняно з іншими методами.
dc.description.abstractFor solving various equations of the form v = f + N(v), the new iterative method and the new algorithm proposed by V. Daftardar–Gejji et al. [Daftardar–Gejji V., Jafari H. J. Math. Anal. Appl. 316 (2), 753–763 (2006); Kumar M., Jhinga A., Daftardar–Gejji V. Int. J. Appl. Comp. Math. 6 (2), 26 (2020)] are been employed successfully and accurately. Our aim in this paper is to present a relaxed new iterative method by introducing a controlled parameter ω in order to extend these methods. According to the values of the parameter ω, we discuss and provide the convergence analysis. The proposed algorithm is fast, effective and simple to implement as compared to the existing one. Numerous non-linear equations are solved to show the applicability and efficiency of the algorithm compared to the other methods.
dc.format.extent421-429
dc.format.pages9
dc.identifier.citationRhofir K. Solving non-linear functional equations by relaxed new iterative method / K. Rhofir, A. Radid // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 421–429.
dc.identifier.citationenRhofir K. Solving non-linear functional equations by relaxed new iterative method / K. Rhofir, A. Radid // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 421–429.
dc.identifier.doidoi.org/10.23939/mmc2024.02.421
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113826
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та обчислення, 2 (11), 2024
dc.relation.ispartofMathematical Modeling and Computing, 2 (11), 2024
dc.relation.references[1] Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston (1994).
dc.relation.references[2] He J.-H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering. 178 (3), 257–262 (1999).
dc.relation.references[3] He J.-H. Variational iteration method – a kind of nonlinear analytical technique: some examples. International Journal of Non-Linear Mechanics. 34 (4), 699–708 (1999).
dc.relation.references[4] Daftardar–Gejji V., Jafari H. An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications. 316 (2), 753–763 (2006).
dc.relation.references[5] Daftardar–Gejji V., Kumar M. New Iterative Method: A Review. Frontiers in Fractional Calculus. 1, 233–268 (2018).
dc.relation.references[6] Bhalekar S., Daftardar–Gejji V. New iterative method: Application to partial differential equations. Applied Mathematics and Computation. 203 (2), 778–783 (2008).
dc.relation.references[7] Daftardar–Gejji V., Bhalekar S. An iterative method for solving fractional differential equations. Proceedings in Applied Mathematics and Mechanics. 7 (1), 2050017–2050018 (2007).
dc.relation.references[8] Daftardar–Gejji V., Bhalekar S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Computers & Mathematics with Applications. 59 (5), 1801–1809 (2010).
dc.relation.references[9] Sari M., Gunay G., Gurarslan G. A solution to the telegraph equation by using DGJ Method. International Journal of Nonlinear Science. 17 (1), 57–66 (2014).
dc.relation.references[10] Hemeda A.-A. New iterative method: application to nth-order integro-differential equations. International Mathematical Forum. 7 (47), 2317–2332 (2012).
dc.relation.references[11] Bhalekar S., Daftardar–Gejji V. Solving fractional-order logistic equation using new iterative method. Internationa Journal of Differential Equations. 2012, 975829 (2012).
dc.relation.references[12] Jhinga A., Daftardar–Gejji V. A new finite-diference predictor–corrector method for fractional differential equations. Applied Mathematics and Computations. 336, 418–432 (2018).
dc.relation.references[13] Bhalekar S., Daftardar–Gejji V. Convergence of the New Iterative Method. International Journal of Differential Equations. 2011, 989065 (2011).
dc.relation.references[14] Radid A., Rhofir K. SOR-Like New Iterative Method for Solving the Epidemic Model and the Prey and Predator Problem. Discrete Dynamics in Nature and Society. 2020, 9053754 (2020).
dc.relation.references[15] Kumar M., Jhinga A., Daftardar–Gejji V. New Algorithm for Solving Non-linear Functional Equations. International Journal of Applied and Computational Mathematics. 6 (2), 26 (2020).
dc.relation.references[16] Joshi M. C., Bose R. K. Some Topics in Nonlinear Functional Analysis. Wiley, Hoboken (1985).
dc.relation.referencesen[1] Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston (1994).
dc.relation.referencesen[2] He J.-H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering. 178 (3), 257–262 (1999).
dc.relation.referencesen[3] He J.-H. Variational iteration method – a kind of nonlinear analytical technique: some examples. International Journal of Non-Linear Mechanics. 34 (4), 699–708 (1999).
dc.relation.referencesen[4] Daftardar–Gejji V., Jafari H. An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications. 316 (2), 753–763 (2006).
dc.relation.referencesen[5] Daftardar–Gejji V., Kumar M. New Iterative Method: A Review. Frontiers in Fractional Calculus. 1, 233–268 (2018).
dc.relation.referencesen[6] Bhalekar S., Daftardar–Gejji V. New iterative method: Application to partial differential equations. Applied Mathematics and Computation. 203 (2), 778–783 (2008).
dc.relation.referencesen[7] Daftardar–Gejji V., Bhalekar S. An iterative method for solving fractional differential equations. Proceedings in Applied Mathematics and Mechanics. 7 (1), 2050017–2050018 (2007).
dc.relation.referencesen[8] Daftardar–Gejji V., Bhalekar S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Computers & Mathematics with Applications. 59 (5), 1801–1809 (2010).
dc.relation.referencesen[9] Sari M., Gunay G., Gurarslan G. A solution to the telegraph equation by using DGJ Method. International Journal of Nonlinear Science. 17 (1), 57–66 (2014).
dc.relation.referencesen[10] Hemeda A.-A. New iterative method: application to nth-order integro-differential equations. International Mathematical Forum. 7 (47), 2317–2332 (2012).
dc.relation.referencesen[11] Bhalekar S., Daftardar–Gejji V. Solving fractional-order logistic equation using new iterative method. Internationa Journal of Differential Equations. 2012, 975829 (2012).
dc.relation.referencesen[12] Jhinga A., Daftardar–Gejji V. A new finite-diference predictor–corrector method for fractional differential equations. Applied Mathematics and Computations. 336, 418–432 (2018).
dc.relation.referencesen[13] Bhalekar S., Daftardar–Gejji V. Convergence of the New Iterative Method. International Journal of Differential Equations. 2011, 989065 (2011).
dc.relation.referencesen[14] Radid A., Rhofir K. SOR-Like New Iterative Method for Solving the Epidemic Model and the Prey and Predator Problem. Discrete Dynamics in Nature and Society. 2020, 9053754 (2020).
dc.relation.referencesen[15] Kumar M., Jhinga A., Daftardar–Gejji V. New Algorithm for Solving Non-linear Functional Equations. International Journal of Applied and Computational Mathematics. 6 (2), 26 (2020).
dc.relation.referencesen[16] Joshi M. C., Bose R. K. Some Topics in Nonlinear Functional Analysis. Wiley, Hoboken (1985).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectнелінійні функціональні рівняння
dc.subjectновий ітераційний метод
dc.subjectметод Дафтардар–Геджі та Джафарі
dc.subjectпослаблений новий ітераційний метод
dc.subjectметод декомпозиції Адоміана
dc.subjectметод гомотопічних збурення
dc.subjectваріаційний ітераційний метод
dc.subjectnonlinear functional equations
dc.subjectnew iterative method
dc.subjectDaftardar–Gejji and Jafari method
dc.subjectrelaxed new iterative method
dc.subjectAdomian decomposition method
dc.subjecthomotopy perturbation method
dc.subjectvariational iterative method
dc.titleSolving non-linear functional equations by relaxed new iterative method
dc.title.alternativeРозв’язування нелінійних функціональних рівнянь новим ітераційним методом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v11n2_Rhofir_K-Solving_non_linear_functional_421-429.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v11n2_Rhofir_K-Solving_non_linear_functional_421-429__COVER.png
Size:
416.39 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: