Stress state modeling of non-circular orthotropic hollow cylinders under different types of loading

dc.citation.epage592
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та обчислення
dc.citation.spage583
dc.citation.volume11
dc.contributor.affiliationНаціональний транспортний університет
dc.contributor.affiliationNational Transport University
dc.contributor.authorРожок, Л. С.
dc.contributor.authorКрук, Л. А.
dc.contributor.authorІсаєнко, Г. Л.
dc.contributor.authorШевчук, Л. О.
dc.contributor.authorRozhok, L. S.
dc.contributor.authorKruk, L. A.
dc.contributor.authorIsaienko, H. L.
dc.contributor.authorShevchuk, L. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T08:10:28Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractЗ використанням просторової моделі лінійної теорії пружності на основі нетрадиційного підходу, що базується на редукції вихідної тривимірної крайової задачі, яка описується системою диференціальних рівнянь в частинних похідних зі змінними коефіцієнтами, до одновимірної крайової задачі для системи звичайних диференціальних рівнянь зі сталими коефіцієнтами, розв’язано задачу про напружений стан порожнистих еліптичних ортотропних циліндрів, що знаходяться під дією різних видів навантаження, за певних граничних умов на торцях. Зниження вимірності вихідної задачі здійснюється за допомогою аналітичних методів відокремлення змінних в двох координатних напрямках в поєднанні з методом апроксимації функцій дискретними рядами Фур’є. Одномірна крайова задача розв’язується стійким чисельним методом дискретної ортогоналізації.
dc.description.abstractBased on a spatial model of the linear theory of elasticity, using an unconventional approach of the reduction of the original three-dimensional boundary value problem described by a system of partial differential equations with variable coefficients to a one-dimensional boundary value problem for a system of ordinary differential equations with constant coefficients, the problem of finding the dimensional stress of hollow elliptic orthotropic cylinders under the influence of various types of loading has been solved under certain boundary conditions at the orientation plane. Reducing the dimensionality of the original problem is carried out using analytical methods of separating variables in two coordinate directions in combination with the method of approximating functions by discrete Fourier series. The one-dimensional boundary value problem is solved by the stable numerical method of discrete orthogonalization.
dc.format.extent583-592
dc.format.pages10
dc.identifier.citationStress state modeling of non-circular orthotropic hollow cylinders under different types of loading / L. S. Rozhok, L. A. Kruk, H. L. Isaienko, L. O. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 583–592.
dc.identifier.citationenStress state modeling of non-circular orthotropic hollow cylinders under different types of loading / L. S. Rozhok, L. A. Kruk, H. L. Isaienko, L. O. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 583–592.
dc.identifier.doidoi.org/10.23939/mmc2024.02.583
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113819
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та обчислення, 2 (11), 2024
dc.relation.ispartofMathematical Modeling and Computing, 2 (11), 2024
dc.relation.references[1] Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M. Stressed and strained state of layered cylindrical shell under local convective heating. Mathematical Modeling and Computing. 9 (1), 143–151 (2022).
dc.relation.references[2] Lugovyi P. Z., Orlenko S. P. Effect of the Asymmetry of Cylindrical Sandwich Shells on their Stress–Strain State under Non-Stationary Loading. International Applied Mechanics. 57 (5), 543–553 (2021).
dc.relation.references[3] Wang B., Hao P., Ma X., Tian K. Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mechanica Sinica. 38, 421440 (2022).
dc.relation.references[4] Chekurin V. F., Postolaki L. I. Axially symmetric elasticity problems for the hollow cylinder with the stress free ends. Analytical solving via a variational method of homogeneous solutions. Mathematical Modeling and Computing. 7 (1), 48–63 (2020).
dc.relation.references[5] Zhang X., He Y., Li Z., Zhai Z., Yan R., Chen X. Static and dynamicanalysisof cylindrical shell by different kinds of B-spline wavelet finite elements on the interval. Engineering with Computers. 36, 1903–1914 (2020).
dc.relation.references[6] Chekurin V. F., Postolaki L. I. Application of the Variational Method of Homogeneous Solutions for the Determination of Axisymmetric Residual Stresses in a Finite Cylinder. Journal of Mathematical Sciences. 249, 539–552 (2020).
dc.relation.references[7] Levchuk S. A., Khmel’nyts’kyi A. A. The Use of One of the Potential Theory Methods to Study the Static Deformation of Composite Cylindrical Shells. Strength Mater. 53, 258–264 (2021).
dc.relation.references[8] Pabyrivskyi V. V., Pabyrivska N. V., Pukach P. Ya. The study of mathematical models of the linear theory of elasticity by presenting the fundamental solution in harmonic potentials. Mathematical Modeling and Computing. 7 (2), 259–268 (2020).
dc.relation.references[9] Grigorenko Ya. M., Rozhok L. S. Stress Analysis of Orthotropic Hollow Noncircular Cylinders. International Applied Mechanics. 40, 679–685 (2004).
dc.relation.references[10] Grigorenko Ya. M., Vasilenko A. T., Emel’yanov N. G., et al. Statics of Structural Members. Vol.8 of the 12-volume series Mechanics of Composites. Kyiv, A.S.K. (1999).
dc.relation.references[11] Lekhnitskii S. G. Theory of elasticity of an anisotropic elastic body. San Francisco, Holden-Day Inc. (1963).
dc.relation.references[12] Godunov S. K. Numerical solution of boundary-value problems for a system of linear ordinary differential equations. Usp. Mat. Nauk. 16 (3), 171–174 (1961).
dc.relation.references[13] Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961).
dc.relation.references[14] Hamming R. W. Numerical Methods for Scientists and Engineers. MG Graw-Hill, New York (1962).
dc.relation.references[15] Grigorenko Ya. M., Rozhok L. S. Stress Analysis of Hollow Orthotropic Cylinders with Oval Cross-Section. International Applied Mechanics. 57 (2), 160–171 (2021).
dc.relation.references[16] Grigorenko Ya. M., Vlaikov G. G., Grigorenko P. Ya. Numerical-analytical solution of shell mechanics problems based on various models. Kyiv, Publishing house “Academperiodika” (2006).
dc.relation.referencesen[1] Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M. Stressed and strained state of layered cylindrical shell under local convective heating. Mathematical Modeling and Computing. 9 (1), 143–151 (2022).
dc.relation.referencesen[2] Lugovyi P. Z., Orlenko S. P. Effect of the Asymmetry of Cylindrical Sandwich Shells on their Stress–Strain State under Non-Stationary Loading. International Applied Mechanics. 57 (5), 543–553 (2021).
dc.relation.referencesen[3] Wang B., Hao P., Ma X., Tian K. Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mechanica Sinica. 38, 421440 (2022).
dc.relation.referencesen[4] Chekurin V. F., Postolaki L. I. Axially symmetric elasticity problems for the hollow cylinder with the stress free ends. Analytical solving via a variational method of homogeneous solutions. Mathematical Modeling and Computing. 7 (1), 48–63 (2020).
dc.relation.referencesen[5] Zhang X., He Y., Li Z., Zhai Z., Yan R., Chen X. Static and dynamicanalysisof cylindrical shell by different kinds of B-spline wavelet finite elements on the interval. Engineering with Computers. 36, 1903–1914 (2020).
dc.relation.referencesen[6] Chekurin V. F., Postolaki L. I. Application of the Variational Method of Homogeneous Solutions for the Determination of Axisymmetric Residual Stresses in a Finite Cylinder. Journal of Mathematical Sciences. 249, 539–552 (2020).
dc.relation.referencesen[7] Levchuk S. A., Khmel’nyts’kyi A. A. The Use of One of the Potential Theory Methods to Study the Static Deformation of Composite Cylindrical Shells. Strength Mater. 53, 258–264 (2021).
dc.relation.referencesen[8] Pabyrivskyi V. V., Pabyrivska N. V., Pukach P. Ya. The study of mathematical models of the linear theory of elasticity by presenting the fundamental solution in harmonic potentials. Mathematical Modeling and Computing. 7 (2), 259–268 (2020).
dc.relation.referencesen[9] Grigorenko Ya. M., Rozhok L. S. Stress Analysis of Orthotropic Hollow Noncircular Cylinders. International Applied Mechanics. 40, 679–685 (2004).
dc.relation.referencesen[10] Grigorenko Ya. M., Vasilenko A. T., Emel’yanov N. G., et al. Statics of Structural Members. Vol.8 of the 12-volume series Mechanics of Composites. Kyiv, A.S.K. (1999).
dc.relation.referencesen[11] Lekhnitskii S. G. Theory of elasticity of an anisotropic elastic body. San Francisco, Holden-Day Inc. (1963).
dc.relation.referencesen[12] Godunov S. K. Numerical solution of boundary-value problems for a system of linear ordinary differential equations. Usp. Mat. Nauk. 16 (3), 171–174 (1961).
dc.relation.referencesen[13] Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961).
dc.relation.referencesen[14] Hamming R. W. Numerical Methods for Scientists and Engineers. MG Graw-Hill, New York (1962).
dc.relation.referencesen[15] Grigorenko Ya. M., Rozhok L. S. Stress Analysis of Hollow Orthotropic Cylinders with Oval Cross-Section. International Applied Mechanics. 57 (2), 160–171 (2021).
dc.relation.referencesen[16] Grigorenko Ya. M., Vlaikov G. G., Grigorenko P. Ya. Numerical-analytical solution of shell mechanics problems based on various models. Kyiv, Publishing house "Academperiodika" (2006).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectдискретні ряди Фур’є
dc.subjectметод дискретної ортогоналізації
dc.subjectпросторовий напружений стан
dc.subjectортотропний матеріал
dc.subjectплоский торець
dc.subjectпорожнисті еліптичні циліндри
dc.subjectdiscrete Fourier series
dc.subjectmethod of discrete orthogonalization
dc.subjectdimensional stress
dc.subjectorthotropic body
dc.subjectorientation plane
dc.subjectelliptic orthotropic cylinders
dc.titleStress state modeling of non-circular orthotropic hollow cylinders under different types of loading
dc.title.alternativeМоделювання напруженого стану некругових ортотропних порожнистих циліндрів за різних видів навантаження
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v11n2_Rozhok_L_S-Stress_state_modeling_583-592.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v11n2_Rozhok_L_S-Stress_state_modeling_583-592__COVER.png
Size:
479.86 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: