On fundamental solution of the Cauchy problem for ultra-parabolic equations in the Asian options models
| dc.citation.epage | 606 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Математичне моделювання та обчислення | |
| dc.citation.spage | 593 | |
| dc.citation.volume | 11 | |
| dc.contributor.affiliation | Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Дронь, В. С. | |
| dc.contributor.author | Мединський, І. П. | |
| dc.contributor.author | Dron, V. S. | |
| dc.contributor.author | Medynskyi, I. P. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T08:10:28Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Наше дослідження присвячене ультрапараболічним рівнянням із трьома групами просторових змінних, які виникли у задачах азіатських опціонів. Клас цих рівнянь, які задовольняють деякі умовам, було позначено EB22. Цей клас є узагальненням відомого класу вироджених параболічних рівнянь типу Колмогорова E22. Раніше було побудовано так звані фундаментальні розв’язки L-типу для рівнянь із класу EB22 та встановлено деякі їхні властивості. Головною особливістю дослідження було встановлення взаємно-однозначної відповідності між класами EB22 та E22. У нашій роботі для рівнянь із класу EB22 будуємо та вивчаємо класичні фундаментальні розв’язки задачі Коші. На коефіцієнти рівнянь накладаються спеціальні умови Гельдера щодо просторових змінних. | |
| dc.description.abstract | Paper studies ultra-parabolic equations with three groups of spatial variables appearing in Asian options problems. The class of these equations which satisfy some conditions was denoted by EB22. This class is a generalization of the well-known class of degenerate parabolic Kolmogorov type equations E22. So called L-type fundamental solutions have been constructed for the equations from the class EB22 previously, and some their properties have been established as well. The main feature of the research was the establishing of an one-to-one correspondence between the classes EB22 and E22. The Cauchy problem classic fundamental solutions for the equations from the class EB22 are considered. Special H¨older conditions with respect to spatial variables are applied to the coefficients of the equations. | |
| dc.format.extent | 593-606 | |
| dc.format.pages | 14 | |
| dc.identifier.citation | Dron V. S. On fundamental solution of the Cauchy problem for ultra-parabolic equations in the Asian options models / V. S. Dron, I. P. Medynskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 593–606. | |
| dc.identifier.citationen | Dron V. S. On fundamental solution of the Cauchy problem for ultra-parabolic equations in the Asian options models / V. S. Dron, I. P. Medynskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 593–606. | |
| dc.identifier.doi | doi.org/10.23939/mmc2024.02.593 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113820 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та обчислення, 2 (11), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 2 (11), 2024 | |
| dc.relation.references | [1] Black F., Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy. 81 (3), 637–659 (1973). | |
| dc.relation.references | [2] Hull J. C. Options, Futures, and Other Derivatives. Williams (2013). | |
| dc.relation.references | [3] Mishura Yu. S., Ralchenko K. V., Sakhno M. L., Shevchenko G. M. Stochastic processes: theory, statistics, application. Kyiv University (2023), (in Ukrainian). | |
| dc.relation.references | [4] Stanton R. Path Dependent Payoffs and Contingent Claim Valuation: Single Premium Deferred Annuities. Unpublished manuscript, Graduate School of Business, Stanford University (1989). | |
| dc.relation.references | [5] Barraquand J., Pudet T. Pricing of American path-dependent contingent claims. Mathematical Finance. 6 (1), 17–51 (1996). | |
| dc.relation.references | [6] Pascucci A. Kolmogorov Equations in Physics and in Finance. Progress in Nonlinear Differential Equations and Their Applications. 63, 353–364 (2005). | |
| dc.relation.references | [7] Barucci E., Polidoro S., Vespri V. Some results on partial differential equations and Asian options. Mathematical Models and Methods in Applied Sciences. 11 (03), 475–497 (2001). | |
| dc.relation.references | [8] Kolmogorov A. Zuf¨allige Bewegungen (Zur Theorie der Brownschen Bewegung). Annals of Mathematics. II. Ser. 35, 116–117 (1934). | |
| dc.relation.references | [9] Hobson D. G., Rogers L. C. G. Complete models with stochastic volatility. Mathematical Finance. 8 (1), 27–48 (1998). | |
| dc.relation.references | [10] Burtnyak I. V., Malitskaya A. P. Calculation of Option Prices Using Methods of Spectral Analysis. BuisnessInform. 4, 152–158 (2013), (in Ukrainian). | |
| dc.relation.references | [11] Pascucci A. Free boundary and optimal stopping problems for American Asian options. Finance and Stochastics. 12, 21–41 (2008). | |
| dc.relation.references | [12] Di Francesco M., Pascucci A. On a class of degenerate parabolic equations of Kolmogorov type. Applied Mathematics Research eXpress. 2005 (3), 77–116 (2005). | |
| dc.relation.references | [13] Polidoro S. On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Le Matematiche. 49 (1), 53–105 (1994). | |
| dc.relation.references | [14] Foschi P., Pascucci A. Kolmogorov equations arising in finance: direct and inverse problem. Lecture Notes of Seminario Interdisciplinare di Matematica. Universit´a degli Studi della Basilicata. VI, 145–156 (2007). | |
| dc.relation.references | [15] Frentz M., Nystr¨om K., Pascucci A., Polidoro S. Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options. Mathematische Annalen. 347, 805–838 (2010). | |
| dc.relation.references | [16] Ivashyshen S. D., Layuk V. V. Cauchy problem for some degenerated parabolic equations of Kolmogorov type. Mat. Met. Fiz.-Mekh. Polya. 50 (3), 56–65 (2007). | |
| dc.relation.references | [17] Eidelman S. D., Ivasyshen S. D., Kochubei A. N. Analytic methods in the theory of differential and pseud differential equations of parabolic type. Operator Theory: Advances and Applications. Vol.152, (2004). | |
| dc.relation.references | [18] Ivashyshen S. D., Layuk V. V. The fundamental solutions of the Cauchy problem for some degenerate parabolic equations of Kolmogorov type. Ukrainian Mathematical Journal. 63, 1670–1705 (2011). | |
| dc.relation.references | [19] Ivasyshen S. D., Medyns’kyi I. P. Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov–typeequations with two qroups of spatial variables of degeneration. I. Journal of Mathematical Sciences. 246 (2), 121–151 (2020). | |
| dc.relation.references | [20] Ivasyshen S. D., Medyns’kyi I. P. Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two qroups of spatial variables of degeneration. II. Journal of Mathematical Sciences. 247 (1), 1–23 (2020). | |
| dc.relation.references | [21] Medynsky I. P. On properties of solutions for Fokker–Planck–Kolmogorov equations. Mathematical Modeling and Computing. 7 (1), 158–168 (2020). | |
| dc.relation.referencesen | [1] Black F., Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy. 81 (3), 637–659 (1973). | |
| dc.relation.referencesen | [2] Hull J. C. Options, Futures, and Other Derivatives. Williams (2013). | |
| dc.relation.referencesen | [3] Mishura Yu. S., Ralchenko K. V., Sakhno M. L., Shevchenko G. M. Stochastic processes: theory, statistics, application. Kyiv University (2023), (in Ukrainian). | |
| dc.relation.referencesen | [4] Stanton R. Path Dependent Payoffs and Contingent Claim Valuation: Single Premium Deferred Annuities. Unpublished manuscript, Graduate School of Business, Stanford University (1989). | |
| dc.relation.referencesen | [5] Barraquand J., Pudet T. Pricing of American path-dependent contingent claims. Mathematical Finance. 6 (1), 17–51 (1996). | |
| dc.relation.referencesen | [6] Pascucci A. Kolmogorov Equations in Physics and in Finance. Progress in Nonlinear Differential Equations and Their Applications. 63, 353–364 (2005). | |
| dc.relation.referencesen | [7] Barucci E., Polidoro S., Vespri V. Some results on partial differential equations and Asian options. Mathematical Models and Methods in Applied Sciences. 11 (03), 475–497 (2001). | |
| dc.relation.referencesen | [8] Kolmogorov A. Zuf¨allige Bewegungen (Zur Theorie der Brownschen Bewegung). Annals of Mathematics. II. Ser. 35, 116–117 (1934). | |
| dc.relation.referencesen | [9] Hobson D. G., Rogers L. C. G. Complete models with stochastic volatility. Mathematical Finance. 8 (1), 27–48 (1998). | |
| dc.relation.referencesen | [10] Burtnyak I. V., Malitskaya A. P. Calculation of Option Prices Using Methods of Spectral Analysis. BuisnessInform. 4, 152–158 (2013), (in Ukrainian). | |
| dc.relation.referencesen | [11] Pascucci A. Free boundary and optimal stopping problems for American Asian options. Finance and Stochastics. 12, 21–41 (2008). | |
| dc.relation.referencesen | [12] Di Francesco M., Pascucci A. On a class of degenerate parabolic equations of Kolmogorov type. Applied Mathematics Research eXpress. 2005 (3), 77–116 (2005). | |
| dc.relation.referencesen | [13] Polidoro S. On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Le Matematiche. 49 (1), 53–105 (1994). | |
| dc.relation.referencesen | [14] Foschi P., Pascucci A. Kolmogorov equations arising in finance: direct and inverse problem. Lecture Notes of Seminario Interdisciplinare di Matematica. Universit´a degli Studi della Basilicata. VI, 145–156 (2007). | |
| dc.relation.referencesen | [15] Frentz M., Nystr¨om K., Pascucci A., Polidoro S. Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options. Mathematische Annalen. 347, 805–838 (2010). | |
| dc.relation.referencesen | [16] Ivashyshen S. D., Layuk V. V. Cauchy problem for some degenerated parabolic equations of Kolmogorov type. Mat. Met. Fiz.-Mekh. Polya. 50 (3), 56–65 (2007). | |
| dc.relation.referencesen | [17] Eidelman S. D., Ivasyshen S. D., Kochubei A. N. Analytic methods in the theory of differential and pseud differential equations of parabolic type. Operator Theory: Advances and Applications. Vol.152, (2004). | |
| dc.relation.referencesen | [18] Ivashyshen S. D., Layuk V. V. The fundamental solutions of the Cauchy problem for some degenerate parabolic equations of Kolmogorov type. Ukrainian Mathematical Journal. 63, 1670–1705 (2011). | |
| dc.relation.referencesen | [19] Ivasyshen S. D., Medyns’kyi I. P. Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov–typeequations with two qroups of spatial variables of degeneration. I. Journal of Mathematical Sciences. 246 (2), 121–151 (2020). | |
| dc.relation.referencesen | [20] Ivasyshen S. D., Medyns’kyi I. P. Classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two qroups of spatial variables of degeneration. II. Journal of Mathematical Sciences. 247 (1), 1–23 (2020). | |
| dc.relation.referencesen | [21] Medynsky I. P. On properties of solutions for Fokker–Planck–Kolmogorov equations. Mathematical Modeling and Computing. 7 (1), 158–168 (2020). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | азійські опціони | |
| dc.subject | ультрапараболічне рівняння типу Колмогорова | |
| dc.subject | фундаментальний розв’язок задачі Коші | |
| dc.subject | Asian options | |
| dc.subject | ultra-parabolic equation of Kolmogorov type | |
| dc.subject | fundamental solution of the Cauchy problem | |
| dc.title | On fundamental solution of the Cauchy problem for ultra-parabolic equations in the Asian options models | |
| dc.title.alternative | Про фундаментальний розв’язок задачі Коші для ультрапараболічних рівнянь в моделях азійських опціонів | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1