An exact solution for unsteady three-dimensional magnetohydrodynamic Casson flow of dusty nanofluid over a porous stretching sheet

dc.citation.epage570
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та обчислення
dc.citation.spage555
dc.citation.volume11
dc.contributor.affiliationІнститут монокристалів, Національна академія наук України
dc.contributor.affiliationХарківський національний університет імені В. Н. Каразіна
dc.contributor.affiliationInstitute for Single Crystals, NAS Ukraine
dc.contributor.affiliationV. N. Karazin Kharkiv National University
dc.contributor.authorКопп, М. Й.
dc.contributor.authorЯновський, В. В.
dc.contributor.authorKopp, M. I.
dc.contributor.authorYanovsky, V. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T08:10:26Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено нестаціонарний тривимірний (3D) потік Кассона нанорідини, що містить частинки пилу, над пористим листом, який лінійно розтягується, у присутності зовнішнього магнітного поля. Вважається, що лист розтягнутий в обох напрямках вздовж площини xy. Керівними рівняннями двофазної моделі є диференціальні рівняння в частинних похідних, які перетворюються на звичайні рівняння за допомогою перетворень подібності. Нанорідина є суспензію наночастинок на водній основі. У цьому дослідженні розглянуто, як розмір наночастинок впливає на властивості потоку пилової нанорідини. Математична модель містить базові рівняння для рідинної та пилової фаз у формі тривимірних диференціальних рівнянь у частинних похідних, які за допомогою відповідного перетворення подібності перетворюються на безрозмірні звичайні розмірні рівняння. Отримано точний аналітичний розв’язок цієї крайової задачі. Детально обговорюється вплив різних фізичних величин на швидкість пилу та нанорідини, включаючи параметр Кассона, магнітний параметр, параметр пористості, параметр взаємодії рідини та частинок, масову концентрацію частинок пилу та розмір наночастинок. У декількох конкретних випадках поточне аналітичний розв’язок демонструє добру згоду з раніше опублікованими чисельними дослідженнями.
dc.description.abstractThe unsteady three-dimensional (3D) Casson flow of a nanofluid containing dust particles over a porous, linearly stretching sheet in the presence of an external magnetic field is studied. It is assumed that the sheet is stretched in both directions along the xy plane. The governing equations of the two-phase model are partial differential equations that are transformed into ordinary equations using similarity transforms. The nanofluid is a suspension of water-based nanoparticles. In this study, we look at how nanoparticle size affect the properties of dusty nanofluid flow. The mathematical model contains the basic equations for the fluid and dust phases in the form of three-dimensional partial differential equations, which are transformed into dimensionless ordinary-dimensional equations using an appropriate similarity transformation. An exact analytical solution to this boundary value problem is obtained. The effects of various physical values on dust and nanofluid velocities are discussed in detail, including the Casson parameter, magnetic parameter, porosity parameter, fluid-particle interaction parameter, mass concentration of dust particles, and nanoparticle size. In a few specific instances, the current analytical solution demonstrates a good agreement with previously published numerical investigations.
dc.format.extent555-570
dc.format.pages16
dc.identifier.citationKopp M. I. An exact solution for unsteady three-dimensional magnetohydrodynamic Casson flow of dusty nanofluid over a porous stretching sheet / M. I. Kopp, V. V. Yanovsky // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 555–570.
dc.identifier.citationenKopp M. I. An exact solution for unsteady three-dimensional magnetohydrodynamic Casson flow of dusty nanofluid over a porous stretching sheet / M. I. Kopp, V. V. Yanovsky // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 555–570.
dc.identifier.doidoi.org/10.23939/mmc2024.02.555
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113817
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та обчислення, 2 (11), 2024
dc.relation.ispartofMathematical Modeling and Computing, 2 (11), 2024
dc.relation.references[1] Saffman P. G. On the stability of laminar flow of a dusty gas. Journal of Fluid Mechanics. 13 (1), 120–128 (1962).
dc.relation.references[2] Chakrabarti K. M. Note on boundary layer in a dusty gas. AIAA Journal. 12 (8), 1136–1137 (1974).
dc.relation.references[3] Datta N., Mishra S. K. Boundary layer flow of a dusty fluid over a semi-infinite flat plate. Acta Mechanica. 42, 71–83 (1982).
dc.relation.references[4] Vajravelu K., Nayfeh J. Hydromagnetic flow of a dusty fluid over a stretching sheet. International Journal of Non-Linear Mechanics. 27 (6), 937–945 (1992).
dc.relation.references[5] Gireesha B. J., Ramesh G. K., Lokesh H. J., Bagewadi C. S. Boundary layer flow and heat transfer of a dusty fluid over a stretching vertical surface. Applied Mathematics. 2 (4), 475–481 (2011).
dc.relation.references[6] Gireesha B. J., Roopa G. S., Lokesh H. J., Bagewadi C. S. MHD flow and heat transfer of a dusty fluid over a stretching sheet. International Journal of Physical and Mathematical Sciences. 3, 171–182 (2012).
dc.relation.references[7] Gireesha B. J., Venkatesh P., Shashikumar N. S., Prasannakumara B. C. Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source. Nonlinear Engineering. 6 (1), 31–41 (2017).
dc.relation.references[8] Sakiadis B. C. Boundary layer behavior on continuous solid surfaces. II. The boundary layer on a continuous flat surface. AIChE Journal. 7 (2), 221–225 (1961).
dc.relation.references[9] Tsou F. K., Sparrow E. M., Goldstein R. J. Flow and heat transfer in the boundary layer on a continuous moving surface. International Journal of Heat and Mass Transfer. 10 (2), 219–235 (1967).
dc.relation.references[10] Crane L. Flow past a stretching plate. Zeitschrift f¨ur Angewandte Mathematik und Physik. 21, 645–647 (1970).
dc.relation.references[11] Bhattacharyya K. Boundary Layer Stagnation-Point Flow of Casson Fluid and Heat Transfer Towards a Shrinking/Stretching Sheet. Frontiers in Heat and Mass Transfer. 4 (2), 023003 (2013).
dc.relation.references[12] Mukhopadhyay S., De P. R., Bhattacharyya K., Layek G. C. Casson Fluid Flow Over an Unsteady Stretching Surface. Ain Shams Engineering Journal. 4 (4), 933–938 (2013).
dc.relation.references[13] Nandy S. K. Analytical Solution of MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid Over a Stretching Sheet with Partial Slip. International Scholarly Research Notices. 2013, 108264 (2013).
dc.relation.references[14] Nadeem S., Haq R. U., Akbar N. S., Khan Z. H. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal. 52 (4), 577–582 (2013).
dc.relation.references[15] Nadeem S., Haq R. U., Akbar N. S. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Transactions on Nanotechnology. 13 (1), 108–115 (2014).
dc.relation.references[16] Mahanta G., Shaw S. 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition. Alexandria Engineering Journal. 54 (3), 653–659 (2015).
dc.relation.references[17] Krishna Murthy M. Analytical Solution for MHD Casson Fluid Flow Past a Porous Linearly Stretching Surface with Wall Mass Transfer. Chemical and Process Engineering Research. 41, 29–37 (2016).
dc.relation.references[18] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. Fluids Eng. Div. FED. 231, 99–105 (1995).
dc.relation.references[19] Oyelakin I. S., Mondal S., Sibanda P. Unsteady MHD three-dimensional Casson nanofluid flow over a porous linear stretching sheet with slip condition. Frontiers in Heat and Mass Transfer. 8 (1), 37 (2017).
dc.relation.references[20] Madhusudan S., Kharabela S., Kumar P. S. Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet. Karbala International Journal of Modern Science. 6 (1), 93–102 (2020).
dc.relation.references[21] Ibrahim W., Anbessa T. Three-Dimensional MHD Mixed Convection Flow of Casson Nanofluid with Hall and Ion Slip Effects. Hindawi Mathematical Problems in Engineering. 2020, 8656147 (2020).
dc.relation.references[22] Japili N., Rosali H., Bachok N. MHD stagnation point flow over a stretching or shrinking sheet in a porous medium with velocity slip. Mathematical Modeling and Computing. 9 (4), 825–832 (2022).
dc.relation.references[23] Yahaya R. I., Ali F. M., Arifin N. M., Khashi’ie N. S., Isa S. S. P. M. MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects. Mathematical Modeling and Computing. 9 (4), 871–881 (2022).
dc.relation.references[24] Alias N. S., Hafidzuddin M. E. H. Effect of suction and MHD induced Navier slip flow due to a non-linear stretching/shrinking sheet. Mathematical Modeling and Computing. 9 (1), 83–91 (2022).
dc.relation.references[25] Nithya N., Vennila B. MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation. Mathematical Modeling and Computing. 10 (1), 195–203 (2023).
dc.relation.references[26] Jalil M., Asghar S., Yasmeen Sh. An Exact Solution of MHD Boundary Layer Flow of Dusty Fluid over a Stretching Surface. Mathematical Problems in Engineering. 2017, 2307469 (2017).
dc.relation.references[27] Vishalakshi A. B., Mahabaleshwar U. S., Sarris I. E. An MHD Fluid Flow over a Porous Stretch ing/Shrinking Sheet with Slips and Mass Transpiration. Micromachines. 13 (1), 116 (2022).
dc.relation.references[28] Mahabaleshwar U. S., Anusha T., Laroze D., Said N. M., Sharifpur M. An MHD Flow of Non-Newtonian Fluid Due to a Porous Stretching/Shrinking Sheet with Mass Transfer. Sustainability. 14 (12), 7020 (2022).
dc.relation.references[29] Vishalakshi A. B., Mahabaleshwar U. S., Hatami M. MHD Casson carbon nanotube flow with mass and heat transfer under thermosolutal Marangoni convection in a porous medium: analytical solution. Scientific Reports. 12, 16071 (2022).
dc.relation.references[30] Khan U., Mebarek-Oudina F., Zaib A., Ishak A., Abu Bakar S., Sherif E.-S. M., Baleanu D. An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces. Waves in Random and Complex Media (2022).
dc.relation.references[31] Akbar A. A., Ahammad N. A., Awan A. U., Hussein A. K., Gamaoun F., Tag-ElDin E. M., Ali B. Insight into the Role of Nanoparticles Shape Factors and Diameter on the Dynamics of Rotating Water-Based Fluid. Nanomaterials. 12 (16), 2801 (2022).
dc.relation.references[32] Ahmad K., Nazar R. Magnetohydrodynamic three-dimensional flow and heat transfer over a stretching surface in a viscoelastic fluid. Journal of Science and Technology. 3 (1), 33–46 (2011).
dc.relation.references[33] Nadeem S., Haq R. U., Akbar N. S., Khan Z. H. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal. 52 (4), 577–582 (2013).
dc.relation.references[34] Vajravelu K., Prasad K., Vaidya H., Basha N. Z., Ng C.-O. Mixed convective flow of a Casson fluid over a vertical stretching sheet. International Journal of Applied and Computational Mathematics. 3, 1619–1638 (2017).
dc.relation.references[35] Gireesha B. J., Ramesh G. K., Bagewadi C. S. Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation. Advances in Applied Science Research. 3 (4), 2392–2401 (2012).
dc.relation.referencesen[1] Saffman P. G. On the stability of laminar flow of a dusty gas. Journal of Fluid Mechanics. 13 (1), 120–128 (1962).
dc.relation.referencesen[2] Chakrabarti K. M. Note on boundary layer in a dusty gas. AIAA Journal. 12 (8), 1136–1137 (1974).
dc.relation.referencesen[3] Datta N., Mishra S. K. Boundary layer flow of a dusty fluid over a semi-infinite flat plate. Acta Mechanica. 42, 71–83 (1982).
dc.relation.referencesen[4] Vajravelu K., Nayfeh J. Hydromagnetic flow of a dusty fluid over a stretching sheet. International Journal of Non-Linear Mechanics. 27 (6), 937–945 (1992).
dc.relation.referencesen[5] Gireesha B. J., Ramesh G. K., Lokesh H. J., Bagewadi C. S. Boundary layer flow and heat transfer of a dusty fluid over a stretching vertical surface. Applied Mathematics. 2 (4), 475–481 (2011).
dc.relation.referencesen[6] Gireesha B. J., Roopa G. S., Lokesh H. J., Bagewadi C. S. MHD flow and heat transfer of a dusty fluid over a stretching sheet. International Journal of Physical and Mathematical Sciences. 3, 171–182 (2012).
dc.relation.referencesen[7] Gireesha B. J., Venkatesh P., Shashikumar N. S., Prasannakumara B. C. Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source. Nonlinear Engineering. 6 (1), 31–41 (2017).
dc.relation.referencesen[8] Sakiadis B. C. Boundary layer behavior on continuous solid surfaces. II. The boundary layer on a continuous flat surface. AIChE Journal. 7 (2), 221–225 (1961).
dc.relation.referencesen[9] Tsou F. K., Sparrow E. M., Goldstein R. J. Flow and heat transfer in the boundary layer on a continuous moving surface. International Journal of Heat and Mass Transfer. 10 (2), 219–235 (1967).
dc.relation.referencesen[10] Crane L. Flow past a stretching plate. Zeitschrift f¨ur Angewandte Mathematik und Physik. 21, 645–647 (1970).
dc.relation.referencesen[11] Bhattacharyya K. Boundary Layer Stagnation-Point Flow of Casson Fluid and Heat Transfer Towards a Shrinking/Stretching Sheet. Frontiers in Heat and Mass Transfer. 4 (2), 023003 (2013).
dc.relation.referencesen[12] Mukhopadhyay S., De P. R., Bhattacharyya K., Layek G. C. Casson Fluid Flow Over an Unsteady Stretching Surface. Ain Shams Engineering Journal. 4 (4), 933–938 (2013).
dc.relation.referencesen[13] Nandy S. K. Analytical Solution of MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid Over a Stretching Sheet with Partial Slip. International Scholarly Research Notices. 2013, 108264 (2013).
dc.relation.referencesen[14] Nadeem S., Haq R. U., Akbar N. S., Khan Z. H. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal. 52 (4), 577–582 (2013).
dc.relation.referencesen[15] Nadeem S., Haq R. U., Akbar N. S. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Transactions on Nanotechnology. 13 (1), 108–115 (2014).
dc.relation.referencesen[16] Mahanta G., Shaw S. 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition. Alexandria Engineering Journal. 54 (3), 653–659 (2015).
dc.relation.referencesen[17] Krishna Murthy M. Analytical Solution for MHD Casson Fluid Flow Past a Porous Linearly Stretching Surface with Wall Mass Transfer. Chemical and Process Engineering Research. 41, 29–37 (2016).
dc.relation.referencesen[18] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. Fluids Eng. Div. FED. 231, 99–105 (1995).
dc.relation.referencesen[19] Oyelakin I. S., Mondal S., Sibanda P. Unsteady MHD three-dimensional Casson nanofluid flow over a porous linear stretching sheet with slip condition. Frontiers in Heat and Mass Transfer. 8 (1), 37 (2017).
dc.relation.referencesen[20] Madhusudan S., Kharabela S., Kumar P. S. Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet. Karbala International Journal of Modern Science. 6 (1), 93–102 (2020).
dc.relation.referencesen[21] Ibrahim W., Anbessa T. Three-Dimensional MHD Mixed Convection Flow of Casson Nanofluid with Hall and Ion Slip Effects. Hindawi Mathematical Problems in Engineering. 2020, 8656147 (2020).
dc.relation.referencesen[22] Japili N., Rosali H., Bachok N. MHD stagnation point flow over a stretching or shrinking sheet in a porous medium with velocity slip. Mathematical Modeling and Computing. 9 (4), 825–832 (2022).
dc.relation.referencesen[23] Yahaya R. I., Ali F. M., Arifin N. M., Khashi’ie N. S., Isa S. S. P. M. MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects. Mathematical Modeling and Computing. 9 (4), 871–881 (2022).
dc.relation.referencesen[24] Alias N. S., Hafidzuddin M. E. H. Effect of suction and MHD induced Navier slip flow due to a non-linear stretching/shrinking sheet. Mathematical Modeling and Computing. 9 (1), 83–91 (2022).
dc.relation.referencesen[25] Nithya N., Vennila B. MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation. Mathematical Modeling and Computing. 10 (1), 195–203 (2023).
dc.relation.referencesen[26] Jalil M., Asghar S., Yasmeen Sh. An Exact Solution of MHD Boundary Layer Flow of Dusty Fluid over a Stretching Surface. Mathematical Problems in Engineering. 2017, 2307469 (2017).
dc.relation.referencesen[27] Vishalakshi A. B., Mahabaleshwar U. S., Sarris I. E. An MHD Fluid Flow over a Porous Stretch ing/Shrinking Sheet with Slips and Mass Transpiration. Micromachines. 13 (1), 116 (2022).
dc.relation.referencesen[28] Mahabaleshwar U. S., Anusha T., Laroze D., Said N. M., Sharifpur M. An MHD Flow of Non-Newtonian Fluid Due to a Porous Stretching/Shrinking Sheet with Mass Transfer. Sustainability. 14 (12), 7020 (2022).
dc.relation.referencesen[29] Vishalakshi A. B., Mahabaleshwar U. S., Hatami M. MHD Casson carbon nanotube flow with mass and heat transfer under thermosolutal Marangoni convection in a porous medium: analytical solution. Scientific Reports. 12, 16071 (2022).
dc.relation.referencesen[30] Khan U., Mebarek-Oudina F., Zaib A., Ishak A., Abu Bakar S., Sherif E.-S. M., Baleanu D. An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces. Waves in Random and Complex Media (2022).
dc.relation.referencesen[31] Akbar A. A., Ahammad N. A., Awan A. U., Hussein A. K., Gamaoun F., Tag-ElDin E. M., Ali B. Insight into the Role of Nanoparticles Shape Factors and Diameter on the Dynamics of Rotating Water-Based Fluid. Nanomaterials. 12 (16), 2801 (2022).
dc.relation.referencesen[32] Ahmad K., Nazar R. Magnetohydrodynamic three-dimensional flow and heat transfer over a stretching surface in a viscoelastic fluid. Journal of Science and Technology. 3 (1), 33–46 (2011).
dc.relation.referencesen[33] Nadeem S., Haq R. U., Akbar N. S., Khan Z. H. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engineering Journal. 52 (4), 577–582 (2013).
dc.relation.referencesen[34] Vajravelu K., Prasad K., Vaidya H., Basha N. Z., Ng C.-O. Mixed convective flow of a Casson fluid over a vertical stretching sheet. International Journal of Applied and Computational Mathematics. 3, 1619–1638 (2017).
dc.relation.referencesen[35] Gireesha B. J., Ramesh G. K., Bagewadi C. S. Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation. Advances in Applied Science Research. 3 (4), 2392–2401 (2012).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectлист що розтягується
dc.subjectнестаціонарний тривимірний (3D) потік Кассона
dc.subjectнанорідина
dc.subjectчастинки пилу
dc.subjectдіаметр наночастинок
dc.subjectсила Лоренца
dc.subjectstretching sheet
dc.subjectunsteady three-dimensional (3D) Casson flow
dc.subjectnanofluid
dc.subjectdust particles
dc.subjectnanoparticles diameter
dc.subjectLorentz force
dc.titleAn exact solution for unsteady three-dimensional magnetohydrodynamic Casson flow of dusty nanofluid over a porous stretching sheet
dc.title.alternativeТочний розв’язок для нестаціонарного тривимірного магнітогідродинамічного потоку Кассона запиленої нанорідини над пористим листом, що розтягується
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v11n2_Kopp_M_I-An_exact_solution_for_unsteady_555-570.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v11n2_Kopp_M_I-An_exact_solution_for_unsteady_555-570__COVER.png
Size:
463.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: