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Abstract. Simulink is a powerful toolbox of Matlab, 

very useful in analysis of dynamical systems. The paper 
presents the application of Simulink/Matlab in analysis 
of the dynamical electrical systems. It will be shown that 
it is an ideal tool for quantitative and qualitative analysis 
of electrical and electronic networks. Its usefulness will 
be shown on the example of modeling the 3-phase 
induction machine and a power system. The non-
classical examples of using Simulink include the 
analysis of nonlinear system in the state space, 
determination of the stability of the equilibrium points as 
well as optimization of the electrical circuit. It should be 
mentioned that nowadays version of Simulink allows 
also to model the electrical networks directly on the 
basis of circuit structure (the specialized library 
SimElectronics) without describing explicitly the circuit 
by the system of equations.  

Key words: Dynamical electrical systems, 
simulation, numerical methods, state space analysis. 

1. Introduction  
Simulink is an extension of Matlab in the form of 

toolbox used to build the computer models of the 
dynamical systems by applying the user friendly 
graphical block diagram notations [2, 3, 4]. Simulink 
converts this graphical representation into a state space 
representation consisting of the set of simultaneous first 
order differential or difference equations. These 
equations are then solved by using the Matlab integrating 
functions [7, 9].  

Simulink enables to simulate in an easy way both 
continuous and discrete systems on the basis of either 
state space or transfer function description of the 
individual blocks forming the system under analysis 
[12]. The common approach of using Simulink in 
solution of any problem of process modeling involves 
few stages: 

a) Description of the modeled process by the set of 
differential equations or in the form of transfer function 
description (s-domain for continuous and z-domain for 
discrete systems); 

b) Building the block diagrams representing this 
mathematical description of the system in the Simulink 
space, including the graphical presentation of results. 

c) Solution of the problem using the solver built in 
the Simulink platform. 

Simulink contains many blocks representing 
different elements collected in specialized libraries used 
in practice of simulation of many types of systems, 
including the dynamical systems. These blocks enable to 
build different, even the most complex nonlinear models 
of the dynamical systems. Moreover, some blocks may 
be combined into subsystems and stored as the separate 
subsystems for future use (so called masked blocks). 
They provide the capability within Simulink similar to 
subprograms in traditional programming languages 
making subsystems easier to use and understanding. 

Moreover Simulink allows to incorporate the 
existing Matlab codes into a Simulink model in the form 
of so called S-functions [3,6]. They may be used in 
situation where it is easier to describe a subsystem 
algorithmically than in a block diagram notation. It is 
possible to write S-functions either as Matlab function 
M-files or by using the C programming language via the 
Matlab MEX-file mechanism. 

The paper reviews the Simulink application in 
modeling dynamical systems. The considerations will be 
illustrated by the examples of simulating the 3-phase 
induction machine and the macro model of the 
cooperation of two power systems in stabilization of the 
frequency. Two additional non-typical applications will 
be concerned with the cooperation of Simulink and 
Matlab to determine the equilibrium points of the 
dynamical systems as well solving some optimization 
problem in electrical circuit.  

2. Building the Simulink model 
The typical application of Simulink in modeling a 

dynamical system requires to describe the system using 
the ordinary differential equations. The best way of such 
description is the state space model  
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where x is the n-dimensional state vector and f(x,t) 
describes the nonlinear process under modeling (also n-
dimensional). The second nonlinear equation represents 
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the output function of the system. Fig. 1 presents the 
general block diagram of solution of the equations 
described by (1).The function f(x,t) represents the right 
side of the differential equation and depends on the state 
space vector x and the time t. After solving the equation 
(1) using the integrators we get values of the state 
variables (vector x) which are used to build both f(x,t) 
and output function g(x,t). In building these functions we 
can use all blocks available in Simulink.  

 

 
Fig. 1. The general scheme of solution  

of differential equation (1) 

There is variety of libraries of blocks grouped 
together according to the subject they represent. To the 
most important belong the libraries representing the 
continuous, discontinuous and discrete elements, blocks 
of mathematical operations, ports and subsystems, signal 
routing elements, set of different sources and sinks as 
well as user defined functions. All of them are user 
friendly and easy to use in building the required block 
diagrams, superficially resembling the computer 
program flow chart, although conceptually quite 
different. In building the Simulink model we drag the 
blocks from the appropriate libraries to the working 
space and then connect them by using the mouse.  

After building the model of the simulated system we 
can set the values of the parameters of the blocks and 
then we are ready to solve them by using the built in 
solver. The solution of the differential equations 
represented by the Simulink model may be achieved by 
different integration procedures built into Matlab by 
applying either variable or constant step. In the case of 
continuous systems we use mainly variable step 
methods. Actually there are following integration 
procedures available for application [9,10,12]: 

ode45 – variable step Runge-Kutta method of 4th 
and 5th order in Dormand-Prince implementation 

ode23 - variable step Runge-Kutta method of 2nd 
and 3rd order in Bogacki-Shampine implementation 

ode113 – the multistep variable order predictor-
corrector method of Adams-Bashforth (prediction) and 
Adams-Moulton (correction) 

ode23t – trapezoidal method of integration 
ode23s – modified Rosenbrock method suited for 

stiff equations 

ode23tb – the cooperation of the trapezoidal rule and 
Gear method of integration suited for stiff equations 

ode15s – Klopfenstein method for solution of stiff 
equations 

This suit for solving the set of differential equations 
is extremely efficient and generates stable solution of 
different complexity equations, including the stiff ones. 

3. Example of application of Simulink in 
modeling the dynamical processes 

In this section we will present two examples of using 
Simulink in modeling the dynamical system [10]. The 
first one will be concerned with 3-phase induction 
machine (the nonlinear model), where the starting point 
is the state space description of the machine. The second 
one is the linearized model of two power systems 
cooperating in stabilization of the frequency in the power 
network.  

3.1 Dynamical model of the induction machine 
In building this model we have assumed some 

simplifying assumptions: symmetry of the 3-phase 
windings of stator and rotor, sinusoidal change of flux in 
the air gap of the machine, neglecting the nonlinearity 
effects of magnetic materials, assuming the constant 
values of self- and mutual inductances of the machine, 
neglecting the eddy currents and anisotropy of the 
magnetic materials.  

If we denote respectively by usi, isi, ψsi (i = 1, 2, 3) 
the voltage, current and flux linkage of the 3-phase 
windings of the stator and by Rs the stator resistance we 
get 3 differential equations describing the stator 
windings  

 sis
si

si iR
dt

du +=
ψ

 (2) 

for i=1, 2, 3. Identical equations are valid for rotor 
windings, for which the index s is replaced by r  

 rir
ri

ri iR
dt

du +=
ψ

 (3) 

We get full system of description of the machine by 
writing the mechanical equation of motion 

 )()( tMtM
dt

dJ me
m −=

Ω
 (4) 

where J is the moment of inertia, Mm – the 
mechanical torque representing the load , Me – the 
electromagnetic torque generated by the rotating 
machine and Ωm – the angular mechanical speed of the 
rotor related to the electrical angular speed Ω in the form 

pm

Ω
=Ω , where p denotes the number of pole pairs of 

the machine. By introducing the complex space vectors 
of current, voltage and flux perpendicular to the engine 
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shaft (defined for the stator current 

( )3
2

213
2

ssss iaaii ++=i  and in the same fashion for 

other variables) we can simplify 6 scalar equations 
defined by (2) and (3) into two vector equations 
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+=
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To define common platform for stator and rotor we 
introduce the new coordinate system rotating with the 
synchronous speed and denote it with the upper index k. 

They are given in the form kjk
ss e θ)(ii = , 

( )θθ −= kjk
rr e)(ii , kjk

ss e θ)(uu = , 

( )θθ −= kjk
rr e)(uu , kjk

ss e θ)(ψψ = , 

( )θθ −= kjk
rr e)(ψψ  where 1−=j   is the unity 

complex operator, θ represents the actual shaft angle and 
θk the synchronous shaft angle. Taking into account that 

dt
θd

=Ω , and the synchronous speed 

dt
θkd

ss ==Ω ω  the equations (5) may be transformed 

to the vector form 
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or scalar form 
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The lower index α in the last equations represents 
the real part and β does the imaginary part of the 
appropriate variable. To get final set of equations we 
have to consider the linear relations between current and 
flux of the stator and rotor, which will be presented in a 
matrix form 
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where Ls is the inductance of one phase of the stator, 
Lr – the inductance of the rotor phase transformed to the 
stator side and Lm – the magnetizing inductance. The 

electromagnetic torque developed by the machine is then 
described in the following form 

 ( )[ ](k)(k)(k)(k)
2 ψψψψ

2
3

βααβ rsrs
mrs

m
e LLL

pLM −
−

=  (9) 

Ordering the equations (7), (8) and (9) we get the 
final dynamical description of the machine in the 
following normal state space form [10]. 
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where we have introduced: 
rs

m

LL
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Associating the coordinate system with the synchronous 

speed we may assume ms U=(k)u α  and 0u(k) =βs . 

Additionally we assume that the supply is attached only 

to the stator, and it means 0uu (k)(k) == βα rr . Fig. 2 

presents the Simulink model representing this system of 
differential equations and the blocks generating the 
electromagnetic torque Me.  

In practical experiments we have assumed the 
machine of the following parameters: the real power 
P=1700W, number of pole pairs p=3, three-phase supply 
voltage of Vph=220V and f=50Hz. The internal 
parameters of the machine were as follows: Rs=3.57Ω, 
Rr=3.68Ω, Ls=0.284H, Lr=0.298H, Lm=0.262H, moment 
of inertia J=0.31kg·m2. It means that σ=0.1889, 
Ks=0.9225, Kr=0.8792, α=66.5454, β=65.3732, 

V3.3112202 =⋅== m
(k)
sα Uu . The 

electromagnetic torque developed by the engine is 

described then by ( )(k)(k)(k)(k) ψψψψ74,73 βααβ rsrseM −= . 

The mechanical speed is equal Ωm=1/3Ω. At f=50Hz the 
synchronous speed of the machine is equal Ωms = 
104.7rad/s, and the nominal torque Mn=P/Ωms=16.24Nm
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Fig. 2. The Simulink model of the 3-phase induction machine 

The above presented model can be the basis for 
many different numerical experiments investigating its 
behavior in dynamical states (start, changing the supply 
and load, stopping, etc.). As an example in Fig. 3 we 
present the change of the angular speed Ωm and 
electromagnetic torque Me of the machine at different 
values of the mechanical torque of the load. Two time 
constants characterizing the electromagnetic and 
electromechanical processes are visible. At the 
beginning of the start the electromagnetic processes 
dominate. Later we observe the steady state of 
electromagnetic process and only mechanical transient is 
visible. The total time of transient in this type of 
machine is strictly dependent on the load. The higher the 
load the longer is the time of stabilization of the speed. 

The next figure (Fig. 4) illustrates the change of the 
speed and the electromagnetic torque at changing value 
of the mechanical load. In these experiments we have 
assumed the following values of Mm: zero (at the start of 
machine) and then every 2 seconds change to 15Nm, 
25Nm and 35Nm. The value Mm=35 Nm exceeded the 
maximum torque of the machine and the motion of the 

machine was following the dynamics governed by the 
negative value of the equivalent driving torque Me-Mm.  

 
 

 

Fig. 3. The transient of the speed Ωm and electromagnetic 
torque Me of the machine at different values of the mechanical 

torque of the load 
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Fig. 4. The change of the speed Ωm and the electromagnetic 

torque Me at changing values of Mm  

3.2 Dynamical model of cooperation of two power 
systems at frequency stabilization. 

The next example will present the linearized system 
described by the transfer function in s-domain. Fig. 5 
presents the general functional diagram of the power 
generating unit [1, 5, 10] with the frequency stabilization 
system in the form of PI feedback regulator. The whole 
system contains the generator, turbine, hydraulic 
cylinder (amplifier) controlling the flow of the gas in 
turbine and the regulation system PI of the frequency 
composed of proportional and integrating regulator. The 
proportional block of this regulator has the gain k=1/R, 
where R the construction dependent parameter. The 
integrating part of the regulator PI adds up all 
differences between the actual and reference frequency 
and is described by the transfer function -Ki/s of the gain 
Ki adjusted by the user. 

 
Fig. 5. The general functional scheme  

of the power generating unit 

To build the simplified model of the whole system 
the linearized first order models of the nonlinear 
elements have been applied. In this way the hydraulic 
cylinder, turbine and generator have been represented by 
the following first order transfer functions. 

Hydraulic cylinder 

 
H

H
H sT

KsT
+

=
1

)(  (11) 

Turbine 

 
T

T
T sT

KsT
+

=
1

)(  (12) 

Generator 

 
G

G
G sT

KsT
+

=
1

)(  (13) 

The linearization was performed at the operating 
point of these devices. The resulting transfer function 
incremental model of the whole system is illustrated on 
Fig. 6. The signals of the models represent the 
increments of all variables (frequency, power, etc.). This 
scheme is directly implemented as a Simulink model, 
using the elements already existing in the library of the 
program.  

 
Fig. 6. The linearized transfer function model of the power 

generating unit of Fig. 5 

In practice many generating subsystems may 
cooperate with each other, supporting one which is in 
highest degree loaded. In this way the reduction of the 
temporary change of the local frequency of the most 
loaded subsystem is possible. The less loaded subsystem 
has higher local frequency, resulting from the change of 
the shaft angle of the generator with respect to the more 
loaded units. The difference of the shaft angles between 
two units causes the flow of the balancing power 
between them. The flow of this balancing power 12PΔ  
between two systems is described by the relation 
proportional to the difference between the local 
frequencies and may be described by  

[ ] [ ])()(2)()( 21
0

21012 sfsf
s
TssTP Δ−Δ=Δ−Δ=Δ

πθθ (14) 

Fig. 7 presents the Simulink model of two 
generating units containing the PI feedback regulator, 
stabilizing the frequency. 

In the numerical experiments we have assumed the 
data corresponding to the power station of the nominal 
power 1000MW [1, 10]. For this station the typical values 
of the parameters are as follows: KH=KT=1, 
KG=120Hz/MW, TH=80ms, TT=300ms, TG=20s, 
R=2.4Hz/MW, T0=0.0707MW/rad, B=0.425MW/Hz. The 
gain of the integrating block Ki was adjusted in a way to 
provide the shortest period of transient of the controlled 
frequency. At the assumed values of parameters of the 
system the optimal value of Ki was equal 0.25.  
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Fig. 7. The Simulink linearized model of two generating units containing the frequency stabilizing PI feedback

Fig. 8 presents the exemplary transient signals 
representing the dynamical change of the local 
frequencies of two cooperating power stations and the 
flow of the balancing power 12PΔ  at the abrupt change 
of the load of the first station ΔPe1=0.2 (in relative terms) 
and at unchanged load of the second one. The balancing 
power flowing from the second to the first subsystem is 
expressed in normalized form.  

Observe that the second subsystem for which the 
load was unchanged, has automatically loaded itself, 
supporting the first one in its need for additional power. 
Thanks to this the change of the local frequency of the 
first subsystem has been significantly reduced. Thanks to 
the integrating regulator the changes of both local 
frequencies disappear after short period of time and both 
systems adapt themselves automatically to the new 
operating conditions of loading. As a result the 
cooperation of two subsystems allows to reduce the 
magnitude of the frequency change and to accelerate the 
return to the nominal operating frequencies of both 
systems.  

Fig. 9 presents the variation of the local frequencies 
and the flow of the balancing power at the cumulative 
simultaneous changes of the load of both systems. Fig. 
9a illustrates the applied changes of the load, Fig. 2b – 
the local frequencies and Fig. 9c – the flow of the 
balancing power. 

The presented above solutions show the capability of 
both subsystems to support each other in stabilizing the 
frequency at sudden change of the load, that may happen 
in practice. Observe that after short period of time the 

flow of the balancing power is automatically stopped and 
does not lead to permanent overloading of the smaller 
subsystem.  

Summarizing we may conclude that application of 
Simulink is very efficient in modeling the behavior of 
the power system at different operating conditions. It 
enables to investigate different dynamical states of the 
system composed of arbitrary number of the cooperating 
subsystems, delivering the results in a very short time. It 
is an ideal tool for learning the stability of the system at 
changing load. 

 

 
Fig. 8. The dynamic behavior  

of two cooperating systems (a) the actual 
 load of both systems, b) the change of local frequencies of 

both systems, c) the flow of balancing power  
at the abrupt change of the load  

of the first system 
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Fig. 9. The change of the temporary signals of two cooperating 
power stations at cumulative simultaneous changes of the load 
of both stations: a) the change of the load, b) local frequencies, 

b) balancing power  

4. Determination of equilibrium points in 
dynamical system 

At this point we will present the non-typical 
application of Simulink to investigate the equilibrium 
points of the nonlinear dynamical systems [2]. It is done 
through the application of the Matlab function trim 
determining the equilibrium closest to the initial point 
and the function linmod used for linearization of the 
nonlinear system (the matrices A, B, C, D at the 
operating point of the nonlinear system). Cooperation of 
Simulink with the Matlab platform allows to investigate 
the local stability of the equilibrium points on the basis 
of the location of the eigenvalues determined using 
Matlab eig function. The whole procedure may be 
summarized in few stages [11]. 

The first point in this application is the creation of 
the nonlinear system model of Simulink and storing it as 
the mdl file (for example as non_sys.mdl).  

Next call the trim function giving the name of file 
(for example non_sys.mdl) and initial conditions xstart of 
the vector x from which the search of the equilibrium 
will start. Its calling may take the form  

x=trim('non_sys', xstart) 
The resulting vector x returns the determined 

equilibrium point. At this point we apply the linmod 
function linearizing the nonlinear state space description 
of the system by using the command 

[A, B, C, D]=linmod(‘non_sys’, x) 
The local stability of the system is then defined on 

the basis of the eigenvalues of the matrix A: position of 
all eigenvalues in the left-hand side of the complex plane 
means stability, one or more eigenvalues in the right-
hand side – instability, position of eigenvalues on the 
imaginary axis means that the linear approximation of 
the system is not appropriate for stability assessment of 
the equilibrium point. 

As an example let us consider the nonlinear system 
described in the following form 

 

21
2

1
2
2

2
1

1

3

102

xx
dt

dx

xxx
dt
dx

−=

+++=
 (15) 

The Simulink model of it is presented in Fig. 10. It is 
stored in the file named non_sys.mdl. 

 
Fig. 10. The Simulink model non_sys.mdl of the nonlinear 

system described by the equation (12) 

To determine the starting positions of the trim 
function we create first the phase portrait of the system 
using Matlab. The appropriate fragment of the program 
is given below. 

% Phase portrait of the nonlinear system 
h=0.01; 
opt=simset('Solver','ode5','FixedStep',h); 
x1=-4:0.25:4; 
x2=-4:0.25:4; 
[nw,nk]=size(x1); 
x1m=zeros(nk,nk); 
x2m=x1m; 
for nx1=1:nk 
 for nx2=1:nk 
 opt=simset(opt,'InitialState',[x1(nx1),x2(nx2)]); 
 [t,x,y]=sim('non_sys',h,opt); 
 dx1=x(2,1)-x1(nx1); 
 dx2=x(2,2)-x2(nx2); 
 s=sqrt(dx1^2+dx2^2)*10; % scaling of the arrow 
 if s>1e-10 
  x1m(nx2,nx1)=dx1/s; 
  x2m(nx2,nx1)=dx2/s; 
 end 
 end 

end 
quiver(x1,x2,x1m,x2m,0);  % drawing the succeeding 

positions of the trajectory 
axis([-4, 4, -4, 4]); 
xlabel('x1') 
ylabel('x2') 

grid 
The phase portrait shown in Fig. 11 indicates two 

equilibrium points denoted by the red rectangles. Their 
exact positions can be determined using Matlab 
command trim 

x1=trim('non_sys',[-3, -5]') 
x2=trim('non_sys',[-3, 4]') 
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As a results we get  
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2.72 
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   ,
3- 
1- 

11 xx  

At each point we linearize the system using the linmod 
command of Matlab. 

[A1, B1, C1, D1]=linmod('non_sys', x1) 
[A2, B2, C2, D2]=linmod('non_sys', x2) 

Applying the eig function for both state matrices we get 
their eigenvalues λ  

eig1=eig(A1) 
eig2=eig(A2) 

As a result we get the eigenvalues of both matrices 

For matrix A1 (the equlibrium point x1)  
λ1=-2 + j4.12, λ2=-2 - j4.12 
For matrix A2 (the equlibrium point x2) 
λ1=6.75, λ2=-3.11 

 
Fig. 11. The phase portrait of the nonlinear system 

The first equilibrium point corresponding to the 
matrix A1 is stable (both eigenvalues in left-hand side of 
the space plane) and the second (the matrix A2) is 
unstable (one eigenvalue placed in the right-hand side of 
the space plane). 

5. Application of Simulink in optimization 
problem 

The Simulink may be easily adopted for cooperation 
with the Matlab optimization toolbox [8] in solving 
different kinds of optimization problems. In such case 
the analysis of the network is done by the Simulink 
program and the results of this analysis are delivered 
through the workspace of Matlab to the optimization 
functions. We show this utility on the example of 
adjusting the resistance of the series RLC circuit to 
provide the shortest possible period of the transient in 
this circuit at switching on the DC voltage source e(t)=E. 
The analysis problem is linear. Assuming state variables 
as the inductor current i and the capacitor voltage u we 
get the state space description of the problem in the 
following form. 
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 (16) 

As the output signal in further considerations we 
take the current i(t). It means that the matrix C and D of 
the state description is given as C=[1 0], D=0. The 
Simulink model (rlc.mdl) allowing the analysis of 
transient in this circuit is presented in Fig. 12. 

 
Fig. 12. The Simulink model of the series RLC circuit 

Our task is to optimize the value of the resistance R 
at constant values of L=1H, C=1F and E=1 to get the 
shortest period of transient current in the circuit. We 
assume that the current achieves its steady state when its 
value is continuously below some a’priori assumed 
threshold ε. Different values of ε will be tried in the 
experiments.  

To solve this problem we have used the function file 
rlc_opt.m in Matlab defining the objective function 
under minimization. This function determines the actual 
time of achieving the steady state with the threshold 
(tolerance) ε. The solution applied in experiments is 
coded in the Matlab program in the following form. 

% RLC – Optimization function using Simulink 
function f=rlc_opt(R) 
t0=0; tf=50; h=0.01; 
opts=simset('SRCWorkspace','current');opts=simset(op

ts,'DSTWorkspace','current'); 
[t,x]=sim('rlc',[t0 h tf],opts); 
epsilon=0.0001; 
tmx=find(abs(x(:,1))<epsilon); 
ntmx=length(tmx); 
for i=ntmx:-1:2 
 if(tmx(i)-tmx(i-1)==1) 
 p=tmx(i); 
 else break, 
 end 
end 

f=t(p); 
 
 
Start of the optimization procedure is initiated by 

writing the following command in Matlab workspace  
[R, tmin]= fminbnd('rlc_opt',0.4, 3); 
As a result of optimization routine we get the 

optimal value of the resistance R and also the minimal 
time tmin of achieving the steady state in RLC circuit 
(both returned by the optimization function). It should be 
observed that the optimal value of resistance R depends 
on the assumed threshold ε. Table 1 presents the 
dependence of the optimal value of R and the minimum 
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time tmin of achieving the steady state in RLC circuit at 
L=1H and C=1F as a function of the assumed value of ε. 

 
Table 1  

The dependence of the optimal value of R and tmin  
on the threshold ε 

ε R [Ω] tmin [s] 
0.01 1.53 4.49 
0.005 1.62 5.13 
0.001 1.77 6.47 
0.0001 1.87 8.56 
0.00001 1.91 10.73 

0.000001 1.94 12.94 
0.0000001 1.97 17.45 
 
It is seen that when ε decreases to zero we approach 

the ideal theoretical value of resistance equal to the 
critical value of 2Ω. Observe that Simulink allows one to 
adjust the optimal value of the parameters in any 
dynamical circuit with respect to the defined criterion of 
optimality. The task of user is only to build the 
dynamical system model in Simulink language and 
define properly the objective function subject to 
minimization within Matlab platform. The applied 
optimization procedure depends on the defined problem. 
Matlab is equipped with a rich variety of optimization 
procedures, able to solve either constrained or 
unconstrained minimization problems.  

6. Conclusions 
The paper discussed the application of Simulink in 

modeling the dynamical systems. It has been shown that 
Simulink enables to simulate in an easy way the 
dynamical behavior of the systems using either state 
space or transfer function description of the individual 
blocks forming the system under analysis. The efficiency 
of application of this approach has been illustrated on the 
example of the model of 3-phase induction machine and 
the linearized model of the power system directed to the 
stabilization of the operating frequency. 

The other two examples have considered the non-
typical application of Simulink at its cooperation with 
Matlab. The first application has been concerned with 
determination of the equilibrium points and their 
stability. In this approach the nonlinear system is 
modeled in Simulink and the other operations are done 
in Matlab. As an additional result of such application 
we may create also the phase portrait of the nonlinear 
system. The second example has presented the 
cooperation of Simulink with the optimization 
procedure of Matlab to solve the optimization problem 
aimed on minimizing the transient period in RLC 
electrical circuit.  

Summarizing, we may conclude that Simulink is a very 
efficient and user friendly tool for modeling the dynamical 
systems. Thanks to very rich libraries and cooperation with 
other Matlab functions we can solve very complex 
problems concerned with the analysis and optimization of 
the linear and nonlinear dynamical systems. 
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SIMULINK ЯК ЕФЕКТИВНИЙ ІНСТРУМЕНТ 
АНАЛІЗУ ДИНАМІЧНИХ ЕЛЕКТРИЧНИХ 

СИСТЕМ 

С. Осовскі 

Simulink є потужним набором інструментів Маtlab-у, 
дуже корисним при аналізі динамічних систем. У статті 
показано застосування Simulink/Matlab до аналізу 
динамічних електричних систем. Показано, що це є 
ідеальним засобом для чисельного та якісного аналізу 
електричних та електронних мереж. Його ефективність 
показано на прикладі моделювання 3-фазної індукційної 
машини та енергетичної системи. Некласичні приклади 
використання Simulink-у включають аналіз нелінійної 
системи у просторі станів, визначення стійкості станів 
рівноваги, а також оптимізацію електричного кола. Слід 
зауважити, що сучасна версія Simulink-у дозволяє 
моделювати електричні мережі безпосередньо на підставі 
структури кола (спеціалізована бібліотека SimElectronics) 
без явного опису кола системою рівнянь.  

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Stanislaw Osowski 

 

60 

 

Stanislaw Osowski was born in 
Poland in 1948. He received the M.Sc., 
Ph.D., and Dr. Sc. degrees from the 
Warsaw University of Technology, War-
saw, Poland, in 1972, 1975, and 1981, 
respectively, all in electrical engineering. 

Currently he is a professor of 
electrical engineering at the Institute of 

the Theory of Electrical Engineering, Measurement and 
Information Systems, Warsaw University of Technology and is 
also employed in Electronic Faculty of Military University of 
Technology, Warsaw, Poland. His research and teaching 
interest are in the areas of circuit theory, artificial neural 
networks, optimization techniques, and computer-aided system 
analysis and design. He is a Senior member of IEEE.

 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


