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Long-range correlations are present in various time series related to many complex 
systems [1]. To analyze them quantitatively, one can make use of a so-called 
fluctuation analysis (FA) technique. In brief, it analyzes the mean-square fluctuation 
F(w) ~ wα as a function of time window size w and finds the exponent α that quantizes 
presence (or absence) of the long-range correlations in a series, and character of those 
correlations. In case of non-stationary series with variable statistical moments, i.e. 
trends available in the series, the FA is insufficient and must be replaced by a 
detrended fluctuation analysis (DFA) [2, 3]. In spite of a great attention of researchers 
to this field in the recent decades, we believe that some methodical, technical and 
even principal moments of the DFA method still need their clarification. In particular, 
this concerns the case if DFA is applied to such fields as, e.g., a statistical linguistics 
[4]. Analysis of fluctuations in linguistic systems has a number of peculiarities. In 
particular, the appropriate time series in many cases include only 1’s and 0’s, 
depending on whether the condition of availability of a linguistic element (a given 
letter, n-gram or word, a word of some length, etc.) at a certain ‘time’ position in a 
text is true or false. Moreover, the linguistic time series are ‘sparse’ in the sense that 
1’s occur mainly with the relative frequencies as small as f = 0.01 or less. 

Using Python, we have developed a number of computer programs: (1) an 
‘extracting’ program that assigns a time series to a given symbolic linguistic 
sequence, (2) a program for generating stochastic (noisy) time series with prescribed 
exponent values α (where the case α = ½ corresponds to a white noise with no long-
range correlations), which is based upon a standard Fourier-filtering technique, and 
(3) a program for analyzing time series and calculating α for the cases of DFA-n of 
different orders n, with a so-called double passing (see [1]). Continuous time series 
with the terms varying in the regions [–1; 1] and [0; 1] have been studied, as well as 
discrete series that involve 0’s and 1’s or –1’s and 1’s. 

Below we describe in brief the main points investigated by us and the appropriate 
conclusions. 

1. Our analyzing program reproduces with sufficient accuracy the exponents α 
introduced by the generating program, at least in the region 0.2÷1.2 tested by us. 

2. The mean α value for the case of white noise depends very weakly on the series 
size L in the region 1010÷1021, while the standard deviation Δα (i.e., an error of 
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estimating α) decreases with increasing L according to the power law Δα(L) ~ L–a, 
with a being close to the value ½ that follows from the central limit theorem 
(cf. also with the data [5]). Since we have Δα less than 0.01 beginning from 
Lmin ≈ (1÷5)·104, practical difficulties associated with preventing finite-size effects 
and enabling reliable DFA data can occur for many linguistic systems, which are 
often shorter than Lmin. 

3. The influence of fitting methods built-in in Python (linear fitting in log-log scale or 
nonlinear power-law fitting F(w) = Awα (see [6, 7]) used to derive α with DFA-n 
(n = 0, 1 and 2) has been studied on a set of 100 binary time sequences (white 
noise; L = 5·104; the frequency f = ½ for 1’s). The data incline to a counter-
intuitive conclusion: the fitting method affects insignificantly the results of the 
scaling analysis and, moreover, the linear fitting yields in somewhat lower square 
deviations Δα. Almost the same results are obtained for the case of correlated 
binary series α = 0.3÷1.8. Notice also that our results confirm a known fact that the 
method DFA-0 is in no case valid for the non-stationary series with α > 1. 

4. In case of ‘sparse’ discrete time series with no long-range correlations (the time 
length L = 5·104 and the frequency region f = 10–5÷5·10–3 for 1’s), the nonlinear 
fitting of the DFA-0,1,2 data becomes superior, because the appropriate α’s are 
closer to the theoretical value ½ for the white noise. Furthermore, these series 
reveal a crossover phenomenon at wco = 50÷6000, with wco ~ f –0.8. It is interesting 
that this crossover has nothing to do with the known competition of trends and 
fluctuations (see [3]). As a result, one has to reckon with the following problem for 
the linguistic sequences: since both of the minimal and maximal time windows are 
limited within the DFA (wmin > wco and wmax < 0.1L), there can be a situation when 
the optimal text-window region wmin < w < wmax for the analysis does not exist at 
all. The reasons for limitations put on the smallest windows deserve further studies. 

5. Even with no accounting for sparseness of the time series and in case of the 
simplest discrete sequences of 0’s and 1’s taken with the same frequencies, the FA 
method appears to be inferior in many respects to any of DFA-n. This implies that 
the DFA has clear preferences over the FA when being applied to symbolic 
sequences dealt with in the statistical linguistics. 
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