Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Substantiation of the shape of a solid oxide fuel cell anode using the stress-strain and shape-dependent crack deceleration approaches
    (Видавництво Львівської політехніки, 2019-03-20) Kuzio, Igor; Vasyliv, Bogdan; Korendiy, Vitaliy; Borovets, Volodymyr; Podhurska, Viktoriya; Lviv Polytechnic National University; Karpenko Physico-mechanical Institute of the NAS of Ukraine
    Stress and strain distributions in the YSZ–NiO spheroidal shape anode-substrate for a solid oxide fuel cell (SOFC) under pressure of operating environment were calculated using the finite element analysis. The features were then compared with ones of the cylindrical shape anode. The radii ranges for the cylindrical and spheroidal (segments of a sphere) parts of the anode ensuring its improved deformation resistance and more uniform stress distribution were suggested. Based on the calculations, an anode of the cylindrical shape with top and bottom convex surfaces (a spheroidal shape anode), with the spheroid to cylinder radii ratio R / Rc in the range from 5 to 20 is suggested. Itsspecific volume V / Sc isin the range from 1 to 2.5 mm. The stressesin the most dangerous areas (i. e. along the axis and the closed-loop fixing) and maximum strain, caused by external gas pressure on the anode working surface, are decreased by 10–30 % and 20–40 % respectively as compared to an anode of the cylindrical shape of the same radius and volume features. This increases the lifetime of a solid oxide fuel cell. A three-dimensional curve of intersection of the surfaces of stress distribution in the anode along its axis and the closed-loop fixing was approximated which displays the values of balanced stresses depending on V / Vc and R / Rc parameters. Also, the advantage of the spheroid shaped SOFC anode-substrate over conventional flat one was substantiated using a shape-dependent crack deceleration approach.
  • Thumbnail Image
    Item
    Методика моделювання напружено-деформованого стану вузлів жорсткого з’єднання трубобетонної колони з монолітним залізобетонним перекриттям
    (Видавництво Львівської політехніки, 2018-02-26) Кущенко, В. М.; Галущак, Ю. Г.; Kushchenko, V.; Halushchak, Y.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено методику моделювання напружено-деформованого стану вузлів жорсткого з’єднання трубобетонної колони з монолітним залізобетонним перекриттям. Моделювання проводили в програмному комплексі Femap (NX Nastran) на основі геометричних моделей, створених у графічному середовищі Autocad. Крайові умови навантаження вузла на основі моделі 40-поверхового будинку з кроком колон 6х6 м змодельовано в програмному комплексі ЛІРА. В результаті проведеного моделювання вузла з’єднання трубобетонної колони та монолітного залізобетонного перекриття отримано графіки розподілу напружень та деформацій, що дало змогу визначити умови роботи елементів вузла та зони концентрації напружень. Результати аналізу напружень за скінченно-елементною моделлю дали змогу покращити вузол завдяки створенню зовнішніх ребер, що знизили концентрації напружень у вузлі. За результатами моделювання вузла бетонне ядро трубобетонної колони включається в роботу колони на стиск і приймає на себе від 55 до 60 % навантаження.
  • Thumbnail Image
    Item
    Induction shrink fits for connecting disks and shafts
    (Publishing House of Lviv Polytechnic National University, 2012) Kotlan, Václav; Ulrych, Bohuš; Doležel, Ivo
    A complete model of the induction shrink fit between a disk and shaft is presented. The model consists of a proposal of appropriate interference, checking the von Mises stress in the disk and shaft, mapping of the process of induction heating and determining the release revolutions. The methodology is illustrated by a typical example. Представлено повну модель індукційної теплопресової посадки диска на вал. Модель включає розрахунок різниці діаметра вала та внутрішнього діаметра диска, перевірку напруження фон Мізеса в диску та валі, поточкове зображення процесу індукційного нагрівання й визначення критичної швидкості обертання вала. Ілюстрацію методики здійснено на типовому прикладі.