A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure
dc.citation.epage | 132 | |
dc.citation.issue | 1 | |
dc.citation.spage | 126 | |
dc.contributor.affiliation | Saveh University of Medical Sciences | |
dc.contributor.affiliation | Islamic Azad University (IAUPS) | |
dc.contributor.author | Heydari, Somayyeh | |
dc.contributor.author | Habibi, Davood | |
dc.contributor.author | Faraji, Alireza | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:29Z | |
dc.date.available | 2024-01-22T10:41:29Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Запропоновано екологічний синтез різноманітнихN,N-дибензильованих сполук внаслідок реакції різних ароматичних амінів з бензилбромідом за допомогою ультразвукового опромінення без розчинників та каталізаторів. Вивчено реакції дибензилування в різних розчинниках та без них за умов ультразвукового опромінення і різних температур. При застосуванні розчиників одержано дуже низькі виходи, а при реакції без розчинників та за кімнатної температури виходи є високими. У зв’язку з одержанням високих виходів реакції каталізатор не використовували. | |
dc.description.abstract | A technology of briquetting of sub-standard coal of Kazakhstan fields to obtain high-quality briquetting fuel has been developed. A modifying additive in the form of oil residues has been selected, that make it possible to obtain a binder composition for brown coal briquetting. The material for the preparation of coal briquettes is coal fines from dry, poorly sintered coals, which cannot be used for direct combustion in the furnace. The optimal parameters for obtaining high-quality fuel briquettes have been determined. The introduction of a modifying additive into the oil residues makes it possible to obtain a binder composition for briquetting brown coal. Studies of the physical parameters of briquettes and the data of SEM showed that the thickness of the adsorption layer of coal and the cohesion of the binder in thin layers play an important role in the formation of the structure and strength of the briquette. It was assumed that at the optimum thickness of the film layer, the maximum manifestation of capillary forces and an increase in the adhesive interaction between the particles and the binder take place. The organic component of the coal fines is a mixture of various X-ray amorphous components, the presence and number of which vary in a series of metamorphism. The results of the performed studies show the possibility and prospects of using local raw materials for the development of high-quality briquetted brown coal fuel. | |
dc.format.extent | 126-132 | |
dc.format.pages | 7 | |
dc.identifier.citation | Heydari S. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure / Somayyeh Heydari, Davood Habibi, Alireza Faraji // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 126–132. | |
dc.identifier.citationen | Heydari S. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure / Somayyeh Heydari, Davood Habibi, Alireza Faraji // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 126–132. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.126 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60949 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Anand, Ch.; Priya, S.V.; Lawrence, G.;Dhawale, D.S.;Varghese, S.;Wahab, M.A.;Prasad, K.S.; Vinu, A. Cage Type Mesoporous Ferrosilicate Catalysts with 3D Structure for Benzylation of Aromatics.Catal. Today2013, 204, 125-131. https://doi.org/10.1016/j.cattod.2012.08.010 | |
dc.relation.references | [2] Wang, H.; Ma, Y.; Tian, H.;Yu, A.;Chang, J.; Wu, Y. TetrabutylAmmonium Bromide-Mediated Benzylation of Phenols in Water under Mild Condition.Tetrahedron2014, 70, 2669-2673. https://doi.org/10.1016/j.tet.2014.01.004 | |
dc.relation.references | [3] Cuong, N.D.;Hoa, N.D.;Hoa, T.T.;Khieu, D.Q.;Quang, D.T.;Quang, V.V.; Hieu, N.V.NanoporousHematite Nanoparticles: Synthesis and Applications for Benzylation of Benzene and Aromatic Compounds.J. Alloy. Compd. 2014, 582, 83-87. https://doi.org/10.1016/j.jallcom.2013.08.057 | |
dc.relation.references | [4] Saxena, S.K.;Viswanadham,N. Enhanced Catalytic Properties of Mesoporous Mordenite for Benzylation of Benzene with Benzyl Alcohol.Appl. Surf. Sci. 2017, 392, 384-390. https://doi.org/10.1016/j.apsusc.2016.09.062 | |
dc.relation.references | [5] Yuan, B.; Li, Y.; Wang, Z.; Yu, F.;Xie, C.; Yu, S. A Novel Brønsted-Lewis Acidic Catalyst Based on Heteropoly Phosphotungstates: Synthesis and Catalysis in Benzylation of p-Xylene with Benzyl Alcohol.Mol. Catal. 2017, 443, 110-116. https://doi.org/10.1016/j.mcat.2017.10.003 | |
dc.relation.references | [6] Bhadra, K.H.; Yadav, G.D. Atom Economical Benzylation of Phenol with Benzyl Alcohol Using 20 % (w/w)Cs2.5H0.5PW12O40 Supported on Mesocellular Foam Silica (MCF) and its Kinetics.Micropor. Mesopor. Mat. 2018, 263, 190-200. https://doi.org/10.1016/j.micromeso.2017.12.017 | |
dc.relation.references | [7] Pu, X.;Su, Y. Heterogeneous Catalysis in Microreactors with Nanofluids for Fine Chemicals Syntheses: Benzylation of Toluene with Benzyl Chloride over Silica-Immobilized FeCl3 Catalyst.Chem. Eng. Sci. 2018, 184, 200-208. https://doi.org/10.1016/j.ces.2018.03.049 | |
dc.relation.references | [8] Nair, D.S.; Kurian, M. Highly Selective Synthesis of Diphenyl Methane via Liquid Phase Benzylation of Benzene over Cobalt Doped Zinc Nanoferrite Catalysts at Mild Conditions.J. Saudi Chem. Soc. 2019, 23, 127-132. https://doi.org/10.1016/j.jscs.2018.05.011 | |
dc.relation.references | [9] Mishra, K.; Lee, Y.R. Highly Synergistic Effect of Bifunctional Ru-rGO Catalyst for Enhanced Hydrogenative-Reductive Benzylation of N-Heteroaromatics.J. Catal. 2019, 376, 77-86. https://doi.org/10.1016/j.jcat.2019.06.052 | |
dc.relation.references | [10] Dar, B.A.;Shrivastava, V.;Bowmik, A.;Wagay, M.A.; Singh, B. An Expeditious N,N-Dibenzylation of Anilines under Ultrasonic Irradiation Conditions Using Low Loading Cu(II)-Clay Heterogeneous Catalyst.Tetrahedron Lett. 2014, 56, 136-141. https://doi.org/10.1016/j.tetlet.2014.11.044 | |
dc.relation.references | [11] Fueno, T.; Okamoto, H.; Tsuruta, T.; Furukawa, J. Quaternary Ammonium Salt as Initiator for Vinyl Polymerization.J. Polym. Sci. 1959, 36, 407-420. https://doi.org/10.1002/pol.1959.1203613034 | |
dc.relation.references | [12] Gupta, M.; Paul, S.; Gupta, R. SiO2-Cu2O: An Efficient and Recyclable Heterogeneous Catalyst for N-Benzylation of Primary and Secondary Amines.Chinese J. Catal. 2014, 35, 444-450. https://doi.org/10.1016/S1872-2067(14)60009-7 | |
dc.relation.references | [13] Major,R.T.CatalyticReduction of Mixtures of Para-Nitro- and Nitrosophenols with Aldehydes and Ketones. J. Am. Chem. Soc.1931, 53, 1901-1908. https://doi.org/10.1021/ja01356a042 | |
dc.relation.references | [14] Hayat, S.; Atta-ur-Rahman; Choudhary, M.I.;Khan, K.M.;Schumann, W.; Bayer, E.N-Alkylation of Anilines, Carboxamides and Several Nitrogen Heterocycles Using CsF–Celite/Alkyl Halides/CH3CN Combination.Tetrahedron2001, 57, 9951-9957. https://doi.org/10.1016/S0040-4020(01)00989-9 | |
dc.relation.references | [15] Leoppky, R.N.;Tomasik, W.Stereoelectronic Effects in Tertiary Amine Nitrosation: Nitrosative Cleavage vs. Aryl Ring Nitration.J. Org. Chem. 1983, 48, 2751-2757. https://doi.org/10.1021/jo00164a023 | |
dc.relation.references | [16] Saitoh, T.; Ichikawa, J. Bis(triarylmethylium)-Mediated Diaryl Ether Synthesis: Oxidative Arylation of Phenols with N,N-Dialkyl-4-phenylthioanilines.J. Am. Chem. Soc. 2005, 127, 9696-9697. https://doi.org/10.1021/ja051839n | |
dc.relation.references | [17] Li, Ch.; Wan, K.-F.; Guo, F.-Y.; Wu, Q.-H.; Yuan, M.-L.; Li, R.-X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H. Iridium-Catalyzed Alkylation of Amine and Nitrobenzene with Alcohol to Tertiary Amine under Base- and Solvent-Free Conditions.J. Org Chem. 2019, 84, 2158-2168. https://doi.org/10.1021/acs.joc.8b03137 | |
dc.relation.references | [18] Noori, S.;Ghorbani-Vaghei, R.; Mirzaei-Mosbat, M.N-Benzylation of Primary Amines Using Magnetic Fe3O4 Nanoparticles Functionalized with Hexamethylenetetramine as an Efficient and Recyclable Heterogeneous Catalyst.J. Mol. Struct. 2020, 1219, 128583. https://doi.org/10.1016/j.molstruc.2020.128583 | |
dc.relation.references | [19] Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Fe2O3-Supported Nano-Gold Catalyzed One-Pot Synthesis of N-Alkylated Anilines from Nitroarenes and Alcohols.Chem. Commun. 2011, 47, 6476-6478. https://doi.org/10.1039/c1cc11057h | |
dc.relation.references | [20] Safaei-Ghomi, J.;Nazemzadeh, S.H.;Shahbazi-Alavi, H. Preparation and Characterization of Fe3O4@SiO2/APTPOSS Core–Shell Composite Nanomagnetics as a Novel Family of Reusable Catalysts and Their Application in the One-Pot Synthesis of 1,3-Thiazolidin-4-one Derivatives.Appl. Organometal Chem. 2016, 30, 911-916. https://doi.org/10.1002/aoc.3520 | |
dc.relation.references | [21] Eddingsaas, N.;Suslick, K. Light from Sonication of Crystal Slurries.Nature2006, 444, 163. https://doi.org/10.1038/444163a | |
dc.relation.references | [22] Khaligh, N.G., Shirini, F.N-Sulfonic Acid Poly(4-vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst for One-Pot Synthesis of Xanthene Derivatives in Dry Media under Ultrasound Irradiation.Ultrason. Sonochem. 2015, 22, 397-403. https://doi.org/10.1016/j.ultsonch.2014.06.020 | |
dc.relation.references | [23] Ramazani, A.; Rouhani, M.;Joo, S.W. Catalyst-Free Sonosynthesis of Highly Substituted Propanamide Derivatives in Water.Ultrason. Sonochem. 2016, 28, 393-399. https://doi.org/10.1016/j.ultsonch.2015.08.019 | |
dc.relation.referencesen | [1] Anand, Ch.; Priya, S.V.; Lawrence, G.;Dhawale, D.S.;Varghese, S.;Wahab, M.A.;Prasad, K.S.; Vinu, A. Cage Type Mesoporous Ferrosilicate Catalysts with 3D Structure for Benzylation of Aromatics.Catal. Today2013, 204, 125-131. https://doi.org/10.1016/j.cattod.2012.08.010 | |
dc.relation.referencesen | [2] Wang, H.; Ma, Y.; Tian, H.;Yu, A.;Chang, J.; Wu, Y. TetrabutylAmmonium Bromide-Mediated Benzylation of Phenols in Water under Mild Condition.Tetrahedron2014, 70, 2669-2673. https://doi.org/10.1016/j.tet.2014.01.004 | |
dc.relation.referencesen | [3] Cuong, N.D.;Hoa, N.D.;Hoa, T.T.;Khieu, D.Q.;Quang, D.T.;Quang, V.V.; Hieu, N.V.NanoporousHematite Nanoparticles: Synthesis and Applications for Benzylation of Benzene and Aromatic Compounds.J. Alloy. Compd. 2014, 582, 83-87. https://doi.org/10.1016/j.jallcom.2013.08.057 | |
dc.relation.referencesen | [4] Saxena, S.K.;Viswanadham,N. Enhanced Catalytic Properties of Mesoporous Mordenite for Benzylation of Benzene with Benzyl Alcohol.Appl. Surf. Sci. 2017, 392, 384-390. https://doi.org/10.1016/j.apsusc.2016.09.062 | |
dc.relation.referencesen | [5] Yuan, B.; Li, Y.; Wang, Z.; Yu, F.;Xie, C.; Yu, S. A Novel Brønsted-Lewis Acidic Catalyst Based on Heteropoly Phosphotungstates: Synthesis and Catalysis in Benzylation of p-Xylene with Benzyl Alcohol.Mol. Catal. 2017, 443, 110-116. https://doi.org/10.1016/j.mcat.2017.10.003 | |
dc.relation.referencesen | [6] Bhadra, K.H.; Yadav, G.D. Atom Economical Benzylation of Phenol with Benzyl Alcohol Using 20 % (w/w)Cs2.5H0.5PW12O40 Supported on Mesocellular Foam Silica (MCF) and its Kinetics.Micropor. Mesopor. Mat. 2018, 263, 190-200. https://doi.org/10.1016/j.micromeso.2017.12.017 | |
dc.relation.referencesen | [7] Pu, X.;Su, Y. Heterogeneous Catalysis in Microreactors with Nanofluids for Fine Chemicals Syntheses: Benzylation of Toluene with Benzyl Chloride over Silica-Immobilized FeCl3 Catalyst.Chem. Eng. Sci. 2018, 184, 200-208. https://doi.org/10.1016/j.ces.2018.03.049 | |
dc.relation.referencesen | [8] Nair, D.S.; Kurian, M. Highly Selective Synthesis of Diphenyl Methane via Liquid Phase Benzylation of Benzene over Cobalt Doped Zinc Nanoferrite Catalysts at Mild Conditions.J. Saudi Chem. Soc. 2019, 23, 127-132. https://doi.org/10.1016/j.jscs.2018.05.011 | |
dc.relation.referencesen | [9] Mishra, K.; Lee, Y.R. Highly Synergistic Effect of Bifunctional Ru-rGO Catalyst for Enhanced Hydrogenative-Reductive Benzylation of N-Heteroaromatics.J. Catal. 2019, 376, 77-86. https://doi.org/10.1016/j.jcat.2019.06.052 | |
dc.relation.referencesen | [10] Dar, B.A.;Shrivastava, V.;Bowmik, A.;Wagay, M.A.; Singh, B. An Expeditious N,N-Dibenzylation of Anilines under Ultrasonic Irradiation Conditions Using Low Loading Cu(II)-Clay Heterogeneous Catalyst.Tetrahedron Lett. 2014, 56, 136-141. https://doi.org/10.1016/j.tetlet.2014.11.044 | |
dc.relation.referencesen | [11] Fueno, T.; Okamoto, H.; Tsuruta, T.; Furukawa, J. Quaternary Ammonium Salt as Initiator for Vinyl Polymerization.J. Polym. Sci. 1959, 36, 407-420. https://doi.org/10.1002/pol.1959.1203613034 | |
dc.relation.referencesen | [12] Gupta, M.; Paul, S.; Gupta, R. SiO2-Cu2O: An Efficient and Recyclable Heterogeneous Catalyst for N-Benzylation of Primary and Secondary Amines.Chinese J. Catal. 2014, 35, 444-450. https://doi.org/10.1016/S1872-2067(14)60009-7 | |
dc.relation.referencesen | [13] Major,R.T.CatalyticReduction of Mixtures of Para-Nitro- and Nitrosophenols with Aldehydes and Ketones. J. Am. Chem. Soc.1931, 53, 1901-1908. https://doi.org/10.1021/ja01356a042 | |
dc.relation.referencesen | [14] Hayat, S.; Atta-ur-Rahman; Choudhary, M.I.;Khan, K.M.;Schumann, W.; Bayer, E.N-Alkylation of Anilines, Carboxamides and Several Nitrogen Heterocycles Using CsF–Celite/Alkyl Halides/CH3CN Combination.Tetrahedron2001, 57, 9951-9957. https://doi.org/10.1016/S0040-4020(01)00989-9 | |
dc.relation.referencesen | [15] Leoppky, R.N.;Tomasik, W.Stereoelectronic Effects in Tertiary Amine Nitrosation: Nitrosative Cleavage vs. Aryl Ring Nitration.J. Org. Chem. 1983, 48, 2751-2757. https://doi.org/10.1021/jo00164a023 | |
dc.relation.referencesen | [16] Saitoh, T.; Ichikawa, J. Bis(triarylmethylium)-Mediated Diaryl Ether Synthesis: Oxidative Arylation of Phenols with N,N-Dialkyl-4-phenylthioanilines.J. Am. Chem. Soc. 2005, 127, 9696-9697. https://doi.org/10.1021/ja051839n | |
dc.relation.referencesen | [17] Li, Ch.; Wan, K.-F.; Guo, F.-Y.; Wu, Q.-H.; Yuan, M.-L.; Li, R.-X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H. Iridium-Catalyzed Alkylation of Amine and Nitrobenzene with Alcohol to Tertiary Amine under Base- and Solvent-Free Conditions.J. Org Chem. 2019, 84, 2158-2168. https://doi.org/10.1021/acs.joc.8b03137 | |
dc.relation.referencesen | [18] Noori, S.;Ghorbani-Vaghei, R.; Mirzaei-Mosbat, M.N-Benzylation of Primary Amines Using Magnetic Fe3O4 Nanoparticles Functionalized with Hexamethylenetetramine as an Efficient and Recyclable Heterogeneous Catalyst.J. Mol. Struct. 2020, 1219, 128583. https://doi.org/10.1016/j.molstruc.2020.128583 | |
dc.relation.referencesen | [19] Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Fe2O3-Supported Nano-Gold Catalyzed One-Pot Synthesis of N-Alkylated Anilines from Nitroarenes and Alcohols.Chem. Commun. 2011, 47, 6476-6478. https://doi.org/10.1039/P.1cc11057h | |
dc.relation.referencesen | [20] Safaei-Ghomi, J.;Nazemzadeh, S.H.;Shahbazi-Alavi, H. Preparation and Characterization of Fe3O4@SiO2/APTPOSS Core–Shell Composite Nanomagnetics as a Novel Family of Reusable Catalysts and Their Application in the One-Pot Synthesis of 1,3-Thiazolidin-4-one Derivatives.Appl. Organometal Chem. 2016, 30, 911-916. https://doi.org/10.1002/aoc.3520 | |
dc.relation.referencesen | [21] Eddingsaas, N.;Suslick, K. Light from Sonication of Crystal Slurries.Nature2006, 444, 163. https://doi.org/10.1038/444163a | |
dc.relation.referencesen | [22] Khaligh, N.G., Shirini, F.N-Sulfonic Acid Poly(4-vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst for One-Pot Synthesis of Xanthene Derivatives in Dry Media under Ultrasound Irradiation.Ultrason. Sonochem. 2015, 22, 397-403. https://doi.org/10.1016/j.ultsonch.2014.06.020 | |
dc.relation.referencesen | [23] Ramazani, A.; Rouhani, M.;Joo, S.W. Catalyst-Free Sonosynthesis of Highly Substituted Propanamide Derivatives in Water.Ultrason. Sonochem. 2016, 28, 393-399. https://doi.org/10.1016/j.ultsonch.2015.08.019 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2012.08.010 | |
dc.relation.uri | https://doi.org/10.1016/j.tet.2014.01.004 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2013.08.057 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2016.09.062 | |
dc.relation.uri | https://doi.org/10.1016/j.mcat.2017.10.003 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2017.12.017 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2018.03.049 | |
dc.relation.uri | https://doi.org/10.1016/j.jscs.2018.05.011 | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2019.06.052 | |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2014.11.044 | |
dc.relation.uri | https://doi.org/10.1002/pol.1959.1203613034 | |
dc.relation.uri | https://doi.org/10.1016/S1872-2067(14)60009-7 | |
dc.relation.uri | https://doi.org/10.1021/ja01356a042 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4020(01)00989-9 | |
dc.relation.uri | https://doi.org/10.1021/jo00164a023 | |
dc.relation.uri | https://doi.org/10.1021/ja051839n | |
dc.relation.uri | https://doi.org/10.1021/acs.joc.8b03137 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2020.128583 | |
dc.relation.uri | https://doi.org/10.1039/c1cc11057h | |
dc.relation.uri | https://doi.org/10.1002/aoc.3520 | |
dc.relation.uri | https://doi.org/10.1038/444163a | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2014.06.020 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2015.08.019 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Heydari S., Habibi D., Faraji A., 2022 | |
dc.subject | N | |
dc.subject | N-дибензилування | |
dc.subject | ароматичні аміни | |
dc.subject | опромінення ультразвуком | |
dc.subject | реакції без розчинників та каталізаторів | |
dc.subject | кімнатна температура | |
dc.subject | N | |
dc.subject | N-dibenzylation | |
dc.subject | aromatic amines | |
dc.subject | ultrasound irradiation | |
dc.subject | solvent and catalyst-free reactions | |
dc.subject | room temperature | |
dc.title | A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure | |
dc.title.alternative | «Зелена» і ефективна процедура ультразвукового дибензилування, без розчинників і каталізаторів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1