Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature

dc.citation.epage88
dc.citation.issue1
dc.citation.spage81
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.affiliationInstitute of Materials & Machine Mechanics, Slovak Academy of Sciences
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIndustrial Company “Autonomous Power Sources”
dc.contributor.authorSaldan, Ivan
dc.contributor.authorOrovčik, L’ubomir
dc.contributor.authorDobrovetska, Oksana
dc.contributor.authorBilan, Oleh
dc.contributor.authorKuntyi, Orest
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-09T09:32:55Z
dc.date.available2024-01-09T09:32:55Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractМетодом дугової плавки приготовлені Al3Ni та Al3Ti сплави і витримані у 5M NaOH для хімічного вилуговування за кімнатної температури. Встановлено, що у випадку Al3Ni сплаву збагачені алюмінієм фази реагують з розчином вилугування з утворенням нанопористого нікелю з діаметром пор у діапазоні ~10–20 нм. Доведено, що тільки фаза чистого алюмінію сплаву Al3Ti реагувала хімічно з утворенням густоскладчатої поверхні з розміром складки ~50–100 нм.
dc.description.abstractAl3Ni and Al3Ti alloys were prepared by arc melting and exposed to chemical leaching in 5M NaOH at room temperature. In case of Al3Ni alloy, Al reached phases react with the leaching solution to produce nanoporous nickel with a pore diameter in the range of ~10–20 nm. Only pure Al phase of Al3Ti alloy chemically reacts with the production of a dense wrinkled surface with a wrinkle size of ~50–100 nm.
dc.format.extent81-88
dc.format.pages8
dc.identifier.citationChemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature / Ivan Saldan, L’ubomir Orovčik, Oksana Dobrovetska, Oleh Bilan, Orest Kuntyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 81–88.
dc.identifier.citationenChemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature / Ivan Saldan, L’ubomir Orovčik, Oksana Dobrovetska, Oleh Bilan, Orest Kuntyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 81–88.
dc.identifier.doidoi.org/10.23939/chcht15.01.081
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60689
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (15), 2021
dc.relation.references[1] Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013.
dc.relation.references[2] Gao H., Wang J., Chen X. et al.: Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007
dc.relation.references[3] Kumar K., Preuss K., Titirici M.-M. et al.: Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505
dc.relation.references[4] Zhu C., Du D., Eychmüller A. et al.: Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255
dc.relation.references[5] Huang A., He Y., Zhou Y. et al.: J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5
dc.relation.references[6] Pia G., Brun M., Aymerich F. et al.: J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5
dc.relation.references[7] Zuo X., Zhu J., Müller-Buschbaum P. et al.: Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013
dc.relation.references[8] Shepida M., Kuntyi O., Nichkalo S. et al.: Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464
dc.relation.references[9] Wafiroh S., Abdulloh A., Widati A.: Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229
dc.relation.references[10] Saldan I., Stetsiv Y., Makogon V., et al.: Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085
dc.relation.references[11] McCue I., Benn E., Gaskey B. et al.: Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739
dc.relation.references[12] Rahman Md.A., Zhu X., Wen C.: Int. J. Electrochem. Sci., 2015, 10, 3767.
dc.relation.references[13] Zhang H., Han Z., Deng Q.: Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694
dc.relation.references[14] Du H., Zhou C., Xie X. et al.: Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109
dc.relation.references[15] Hakamada M., Mabuchi M.: J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031
dc.relation.references[16] Dan Z., Qin F., Sugawara Y. et al.: Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018
dc.relation.references[17] Qiu H.-J., Kang J., Liu P. et al.: J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070
dc.relation.references[18] Wang L., Balk T.: Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600
dc.relation.references[19] Sechi E., Vacca A., Mascia M. et al.: Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017
dc.relation.references[20] Kuntyi O., Ivashkin V., Yavorskii V. et al.: Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158
dc.relation.references[21] Kim S., Jung H.-D., Kang M.-H. et al.: Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011
dc.relation.references[22] Panagiotopoulos N., Jorge A., Rebai I. et al.: Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054
dc.relation.references[23] Zhang F., Li P., Yu J. et al.: J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19
dc.relation.references[24] Erlebacher J., Aziz M., Karma A.: Nature, 2001, 410, 450. https://doi.org/10.1038/35068529
dc.relation.references[25] Zhao W., Liu N., Rong J. et al.: Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866
dc.relation.references[26] Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
dc.relation.references[27] Saldan I., Burtovyy R., Becker H.W. et al.: Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.references[28] Saldan I.: Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062
dc.relation.references[29] Gosalawit-Utke R., Nielsen T. K., Saldan I. et al.: J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903
dc.relation.references[30] Miettinen J.: Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002
dc.relation.references[31] Wang H., Reed R., Gebelin J. et al.: Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007
dc.relation.references[32] Saldan I., Frenzel J., Shekhah O. et al.: J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
dc.relation.referencesen[1] Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013.
dc.relation.referencesen[2] Gao H., Wang J., Chen X. et al., Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007
dc.relation.referencesen[3] Kumar K., Preuss K., Titirici M.-M. et al., Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505
dc.relation.referencesen[4] Zhu C., Du D., Eychmüller A. et al., Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255
dc.relation.referencesen[5] Huang A., He Y., Zhou Y. et al., J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5
dc.relation.referencesen[6] Pia G., Brun M., Aymerich F. et al., J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5
dc.relation.referencesen[7] Zuo X., Zhu J., Müller-Buschbaum P. et al., Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013
dc.relation.referencesen[8] Shepida M., Kuntyi O., Nichkalo S. et al., Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464
dc.relation.referencesen[9] Wafiroh S., Abdulloh A., Widati A., Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229
dc.relation.referencesen[10] Saldan I., Stetsiv Y., Makogon V., et al., Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085
dc.relation.referencesen[11] McCue I., Benn E., Gaskey B. et al., Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739
dc.relation.referencesen[12] Rahman Md.A., Zhu X., Wen C., Int. J. Electrochem. Sci., 2015, 10, 3767.
dc.relation.referencesen[13] Zhang H., Han Z., Deng Q., Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694
dc.relation.referencesen[14] Du H., Zhou C., Xie X. et al., Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109
dc.relation.referencesen[15] Hakamada M., Mabuchi M., J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031
dc.relation.referencesen[16] Dan Z., Qin F., Sugawara Y. et al., Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018
dc.relation.referencesen[17] Qiu H.-J., Kang J., Liu P. et al., J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070
dc.relation.referencesen[18] Wang L., Balk T., Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600
dc.relation.referencesen[19] Sechi E., Vacca A., Mascia M. et al., Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017
dc.relation.referencesen[20] Kuntyi O., Ivashkin V., Yavorskii V. et al., Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158
dc.relation.referencesen[21] Kim S., Jung H.-D., Kang M.-H. et al., Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011
dc.relation.referencesen[22] Panagiotopoulos N., Jorge A., Rebai I. et al., Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054
dc.relation.referencesen[23] Zhang F., Li P., Yu J. et al., J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19
dc.relation.referencesen[24] Erlebacher J., Aziz M., Karma A., Nature, 2001, 410, 450. https://doi.org/10.1038/35068529
dc.relation.referencesen[25] Zhao W., Liu N., Rong J. et al., Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866
dc.relation.referencesen[26] Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
dc.relation.referencesen[27] Saldan I., Burtovyy R., Becker H.W. et al., Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.referencesen[28] Saldan I., Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062
dc.relation.referencesen[29] Gosalawit-Utke R., Nielsen T. K., Saldan I. et al., J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903
dc.relation.referencesen[30] Miettinen J., Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002
dc.relation.referencesen[31] Wang H., Reed R., Gebelin J. et al., Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007
dc.relation.referencesen[32] Saldan I., Frenzel J., Shekhah O. et al., J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
dc.relation.urihttps://doi.org/10.1016/j.nanoen.2018.09.007
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.6b00505
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.5b00255
dc.relation.urihttps://doi.org/10.1007/s10853-018-2961-5
dc.relation.urihttps://doi.org/10.1007/s10853-016-0407-5
dc.relation.urihttps://doi.org/10.1016/j.nanoen.2016.11.013
dc.relation.urihttps://doi.org/10.1155/2019/2629464
dc.relation.urihttps://doi.org/10.23939/chcht12.02.229
dc.relation.urihttps://doi.org/10.23939/chcht13.01.085
dc.relation.urihttps://doi.org/10.1146/annurev-matsci-070115-031739
dc.relation.urihttps://doi.org/10.3390/nano9050694
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2017.04.109
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2009.06.031
dc.relation.urihttps://doi.org/10.1016/j.intermet.2012.06.018
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2013.08.070
dc.relation.urihttps://doi.org/10.1080/09500839.2014.944600
dc.relation.urihttps://doi.org/10.3303/CET1647017
dc.relation.urihttps://doi.org/10.1134/S1070427207110158
dc.relation.urihttps://doi.org/10.1016/j.msec.2013.03.011
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2015.09.054
dc.relation.urihttps://doi.org/10.1557/jmr.2017.19
dc.relation.urihttps://doi.org/10.1038/35068529
dc.relation.urihttps://doi.org/10.1002/adem.201600866
dc.relation.urihttps://doi.org/10.1007/s10008-009-0974-3
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2016.05.062
dc.relation.urihttps://doi.org/10.1021/jp2021903
dc.relation.urihttps://doi.org/10.1016/j.calphad.2005.02.002
dc.relation.urihttps://doi.org/10.1016/j.calphad.2012.06.007
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2008.03.050
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Saldan I., Orovčik L., Dobrovetska O., Bilan O, Kuntyi O., 2021
dc.subjectнікель
dc.subjectтитан
dc.subjectпористий матеріал
dc.subjectХ-променева дифракція
dc.subjectморфологія поверхні
dc.subjectnickel
dc.subjecttitanium
dc.subjectporous material
dc.subjectX-ray diffraction
dc.subjectsurface morphology
dc.titleChemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature
dc.title.alternativeХімічне вилуговування за кімнатної температури сплавів Al3Ni та Al3Ti
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v15n1_Saldan_I-Chemical_Leaching_of_Al3Ni_81-88.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v15n1_Saldan_I-Chemical_Leaching_of_Al3Ni_81-88__COVER.png
Size:
548.34 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: