Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature
dc.citation.epage | 88 | |
dc.citation.issue | 1 | |
dc.citation.spage | 81 | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.affiliation | Institute of Materials & Machine Mechanics, Slovak Academy of Sciences | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Industrial Company “Autonomous Power Sources” | |
dc.contributor.author | Saldan, Ivan | |
dc.contributor.author | Orovčik, L’ubomir | |
dc.contributor.author | Dobrovetska, Oksana | |
dc.contributor.author | Bilan, Oleh | |
dc.contributor.author | Kuntyi, Orest | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T09:32:55Z | |
dc.date.available | 2024-01-09T09:32:55Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Методом дугової плавки приготовлені Al3Ni та Al3Ti сплави і витримані у 5M NaOH для хімічного вилуговування за кімнатної температури. Встановлено, що у випадку Al3Ni сплаву збагачені алюмінієм фази реагують з розчином вилугування з утворенням нанопористого нікелю з діаметром пор у діапазоні ~10–20 нм. Доведено, що тільки фаза чистого алюмінію сплаву Al3Ti реагувала хімічно з утворенням густоскладчатої поверхні з розміром складки ~50–100 нм. | |
dc.description.abstract | Al3Ni and Al3Ti alloys were prepared by arc melting and exposed to chemical leaching in 5M NaOH at room temperature. In case of Al3Ni alloy, Al reached phases react with the leaching solution to produce nanoporous nickel with a pore diameter in the range of ~10–20 nm. Only pure Al phase of Al3Ti alloy chemically reacts with the production of a dense wrinkled surface with a wrinkle size of ~50–100 nm. | |
dc.format.extent | 81-88 | |
dc.format.pages | 8 | |
dc.identifier.citation | Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature / Ivan Saldan, L’ubomir Orovčik, Oksana Dobrovetska, Oleh Bilan, Orest Kuntyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 81–88. | |
dc.identifier.citationen | Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature / Ivan Saldan, L’ubomir Orovčik, Oksana Dobrovetska, Oleh Bilan, Orest Kuntyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 81–88. | |
dc.identifier.doi | doi.org/10.23939/chcht15.01.081 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60689 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (15), 2021 | |
dc.relation.references | [1] Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013. | |
dc.relation.references | [2] Gao H., Wang J., Chen X. et al.: Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007 | |
dc.relation.references | [3] Kumar K., Preuss K., Titirici M.-M. et al.: Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505 | |
dc.relation.references | [4] Zhu C., Du D., Eychmüller A. et al.: Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255 | |
dc.relation.references | [5] Huang A., He Y., Zhou Y. et al.: J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.references | [6] Pia G., Brun M., Aymerich F. et al.: J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5 | |
dc.relation.references | [7] Zuo X., Zhu J., Müller-Buschbaum P. et al.: Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013 | |
dc.relation.references | [8] Shepida M., Kuntyi O., Nichkalo S. et al.: Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464 | |
dc.relation.references | [9] Wafiroh S., Abdulloh A., Widati A.: Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229 | |
dc.relation.references | [10] Saldan I., Stetsiv Y., Makogon V., et al.: Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085 | |
dc.relation.references | [11] McCue I., Benn E., Gaskey B. et al.: Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739 | |
dc.relation.references | [12] Rahman Md.A., Zhu X., Wen C.: Int. J. Electrochem. Sci., 2015, 10, 3767. | |
dc.relation.references | [13] Zhang H., Han Z., Deng Q.: Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694 | |
dc.relation.references | [14] Du H., Zhou C., Xie X. et al.: Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109 | |
dc.relation.references | [15] Hakamada M., Mabuchi M.: J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031 | |
dc.relation.references | [16] Dan Z., Qin F., Sugawara Y. et al.: Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018 | |
dc.relation.references | [17] Qiu H.-J., Kang J., Liu P. et al.: J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070 | |
dc.relation.references | [18] Wang L., Balk T.: Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600 | |
dc.relation.references | [19] Sechi E., Vacca A., Mascia M. et al.: Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017 | |
dc.relation.references | [20] Kuntyi O., Ivashkin V., Yavorskii V. et al.: Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158 | |
dc.relation.references | [21] Kim S., Jung H.-D., Kang M.-H. et al.: Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011 | |
dc.relation.references | [22] Panagiotopoulos N., Jorge A., Rebai I. et al.: Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054 | |
dc.relation.references | [23] Zhang F., Li P., Yu J. et al.: J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19 | |
dc.relation.references | [24] Erlebacher J., Aziz M., Karma A.: Nature, 2001, 410, 450. https://doi.org/10.1038/35068529 | |
dc.relation.references | [25] Zhao W., Liu N., Rong J. et al.: Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866 | |
dc.relation.references | [26] Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.references | [27] Saldan I., Burtovyy R., Becker H.W. et al.: Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.references | [28] Saldan I.: Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062 | |
dc.relation.references | [29] Gosalawit-Utke R., Nielsen T. K., Saldan I. et al.: J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903 | |
dc.relation.references | [30] Miettinen J.: Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002 | |
dc.relation.references | [31] Wang H., Reed R., Gebelin J. et al.: Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007 | |
dc.relation.references | [32] Saldan I., Frenzel J., Shekhah O. et al.: J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.relation.referencesen | [1] Xu Q. (Ed.): Nanoporous Materials. Synthesis and Applications. Taylor and Francis Group LLC, London 2013. | |
dc.relation.referencesen | [2] Gao H., Wang J., Chen X. et al., Nano Energy, 2018, 53, 769. https://doi.org/10.1016/j.nanoen.2018.09.007 | |
dc.relation.referencesen | [3] Kumar K., Preuss K., Titirici M.-M. et al., Chem. Rev., 2017, 117, 1796. https://doi.org/10.1021/acs.chemrev.6b00505 | |
dc.relation.referencesen | [4] Zhu C., Du D., Eychmüller A. et al., Chem. Rev., 2015, 115, 8896. https://doi.org/10.1021/acs.chemrev.5b00255 | |
dc.relation.referencesen | [5] Huang A., He Y., Zhou Y. et al., J. Mater. Sci., 2019, 54, 949. https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.referencesen | [6] Pia G., Brun M., Aymerich F. et al., J. Mater. Sci., 2017, 52, 1106. https://doi.org/10.1007/s10853-016-0407-5 | |
dc.relation.referencesen | [7] Zuo X., Zhu J., Müller-Buschbaum P. et al., Nano Energy, 2017, 31, 113. https://doi.org/10.1016/j.nanoen.2016.11.013 | |
dc.relation.referencesen | [8] Shepida M., Kuntyi O., Nichkalo S. et al., Adv. Mater. Sci. Eng., 2019, 2019. https://doi.org/10.1155/2019/2629464 | |
dc.relation.referencesen | [9] Wafiroh S., Abdulloh A., Widati A., Chem. Chem. Technol., 2018, 12, 229. https://doi.org/10.23939/chcht12.02.229 | |
dc.relation.referencesen | [10] Saldan I., Stetsiv Y., Makogon V., et al., Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01.085 | |
dc.relation.referencesen | [11] McCue I., Benn E., Gaskey B. et al., Ann. Rev. Mater. Res., 2016, 46, 263. https://doi.org/10.1146/annurev-matsci-070115-031739 | |
dc.relation.referencesen | [12] Rahman Md.A., Zhu X., Wen C., Int. J. Electrochem. Sci., 2015, 10, 3767. | |
dc.relation.referencesen | [13] Zhang H., Han Z., Deng Q., Nanomaterials, 2019, 9, 694. https://doi.org/10.3390/nano9050694 | |
dc.relation.referencesen | [14] Du H., Zhou C., Xie X. et al., Int. J. Hydrogen Energy, 2017, 42, 15236. https://doi.org/10.1016/j.ijhydene.2017.04.109 | |
dc.relation.referencesen | [15] Hakamada M., Mabuchi M., J. Alloys Comp., 2009, 485, 583. https://doi.org/10.1016/j.jallcom.2009.06.031 | |
dc.relation.referencesen | [16] Dan Z., Qin F., Sugawara Y. et al., Intermetallics, 2012, 31, 157. https://doi.org/10.1016/j.intermet.2012.06.018 | |
dc.relation.referencesen | [17] Qiu H.-J., Kang J., Liu P. et al., J. Power Sources, 2014, 247, 896. https://doi.org/10.1016/j.jpowsour.2013.08.070 | |
dc.relation.referencesen | [18] Wang L., Balk T., Philosoph. Magazine Lett., 2014, 94, 573. https://doi.org/10.1080/09500839.2014.944600 | |
dc.relation.referencesen | [19] Sechi E., Vacca A., Mascia M. et al., Chem. Eng. Transact., 2016, 47, 97. https://doi.org/10.3303/CET1647017 | |
dc.relation.referencesen | [20] Kuntyi O., Ivashkin V., Yavorskii V. et al., Russ. J. Appl. Chem., 2007, 80, 1856. https://doi.org/10.1134/S1070427207110158 | |
dc.relation.referencesen | [21] Kim S., Jung H.-D., Kang M.-H. et al., Mater. Sci. Eng. C, 2013, 33, 2808. https://doi.org/10.1016/j.msec.2013.03.011 | |
dc.relation.referencesen | [22] Panagiotopoulos N., Jorge A., Rebai I. et al., Micropor. Mesopor. Mater., 2016, 222, 23. https://doi.org/10.1016/j.micromeso.2015.09.054 | |
dc.relation.referencesen | [23] Zhang F., Li P., Yu J. et al., J. Mater. Res., 2017, 32, 1528. https://doi.org/10.1557/jmr.2017.19 | |
dc.relation.referencesen | [24] Erlebacher J., Aziz M., Karma A., Nature, 2001, 410, 450. https://doi.org/10.1038/35068529 | |
dc.relation.referencesen | [25] Zhao W., Liu N., Rong J. et al., Adv. Eng. Mater., 2017, 19, 1600866. https://doi.org/10.1002/adem.201600866 | |
dc.relation.referencesen | [26] Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.referencesen | [27] Saldan I., Burtovyy R., Becker H.W. et al., Int. J. Hydrogen Energy, 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.referencesen | [28] Saldan I., Int. J. Hydrogen Energy, 2016, 41, 11201. https://doi.org/10.1016/j.ijhydene.2016.05.062 | |
dc.relation.referencesen | [29] Gosalawit-Utke R., Nielsen T. K., Saldan I. et al., J. Phys. Chem. C, 2011, 115, 10903. https://doi.org/10.1021/jp2021903 | |
dc.relation.referencesen | [30] Miettinen J., Calphad, 2005, 29, 40. https://doi.org/10.1016/j.calphad.2005.02.002 | |
dc.relation.referencesen | [31] Wang H., Reed R., Gebelin J. et al., Calphad, 2012, 39, 21. https://doi.org/10.1016/j.calphad.2012.06.007 | |
dc.relation.referencesen | [32] Saldan I., Frenzel J., Shekhah O. et al., J. Alloys Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.relation.uri | https://doi.org/10.1016/j.nanoen.2018.09.007 | |
dc.relation.uri | https://doi.org/10.1021/acs.chemrev.6b00505 | |
dc.relation.uri | https://doi.org/10.1021/acs.chemrev.5b00255 | |
dc.relation.uri | https://doi.org/10.1007/s10853-018-2961-5 | |
dc.relation.uri | https://doi.org/10.1007/s10853-016-0407-5 | |
dc.relation.uri | https://doi.org/10.1016/j.nanoen.2016.11.013 | |
dc.relation.uri | https://doi.org/10.1155/2019/2629464 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.02.229 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.01.085 | |
dc.relation.uri | https://doi.org/10.1146/annurev-matsci-070115-031739 | |
dc.relation.uri | https://doi.org/10.3390/nano9050694 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2017.04.109 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2009.06.031 | |
dc.relation.uri | https://doi.org/10.1016/j.intermet.2012.06.018 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2013.08.070 | |
dc.relation.uri | https://doi.org/10.1080/09500839.2014.944600 | |
dc.relation.uri | https://doi.org/10.3303/CET1647017 | |
dc.relation.uri | https://doi.org/10.1134/S1070427207110158 | |
dc.relation.uri | https://doi.org/10.1016/j.msec.2013.03.011 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2015.09.054 | |
dc.relation.uri | https://doi.org/10.1557/jmr.2017.19 | |
dc.relation.uri | https://doi.org/10.1038/35068529 | |
dc.relation.uri | https://doi.org/10.1002/adem.201600866 | |
dc.relation.uri | https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2016.05.062 | |
dc.relation.uri | https://doi.org/10.1021/jp2021903 | |
dc.relation.uri | https://doi.org/10.1016/j.calphad.2005.02.002 | |
dc.relation.uri | https://doi.org/10.1016/j.calphad.2012.06.007 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Saldan I., Orovčik L., Dobrovetska O., Bilan O, Kuntyi O., 2021 | |
dc.subject | нікель | |
dc.subject | титан | |
dc.subject | пористий матеріал | |
dc.subject | Х-променева дифракція | |
dc.subject | морфологія поверхні | |
dc.subject | nickel | |
dc.subject | titanium | |
dc.subject | porous material | |
dc.subject | X-ray diffraction | |
dc.subject | surface morphology | |
dc.title | Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature | |
dc.title.alternative | Хімічне вилуговування за кімнатної температури сплавів Al3Ni та Al3Ti | |
dc.type | Article |
Files
License bundle
1 - 1 of 1