Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System

dc.citation.epage6
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorРимар, Тетяна
dc.contributor.authorМалишева, Анна
dc.contributor.authorRymar, Tetiana
dc.contributor.authorMalysheva, Anna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-10T08:12:22Z
dc.date.created2024-02-28
dc.date.issued2024-02-28
dc.description.abstractУ роботі досліджено теплообмін під час конденсації водяної пари на вертикальних трубах технологічного конденсатора системи розхолоджування енергоблоку АЕС. Чисельне дослідження виконано за різних масових витратах пари в діапазоні їх зміни від 20 кг/с до 40 кг/с. Інтенсифікація теплообміну передбачена за рахунок застосування високоефективних теплообмінних профільованих трубок. Для дослідження використано комплект теплообмінних трубок діаметром 25 мм і товщиною стінки 1,4 мм з різними значеннями відстані між канавками профільованої труби: 0,007075 м; 0,00875 м; 0,00925 м; 0,0105 м. Також досліджувався вплив глибини канавки профільованої труби (у діапазоні від 0,0007 до 0,0009 м) на теплообмін під час конденсації водяної пари на вертикальних трубах. Дослідження виконано для діапазону зміни числа Рейнольдса для конденсатної плівки від 5254,2 до 10508,5. У роботі отримано дані, що вказують на зростання коефіцієнта тепловіддачі на трубі з інтенсифікатором порівняно з коефіцієнтом тепловіддачі на гладкій трубі. У цьому аналізі не враховувалася зміна температури стінки трубки.
dc.description.abstractThe paper investigates heat transfer during condensation of water vapor on vertical pipes of the process condenser of the cooling system of a nuclear power unit. The numerical study was performed at different mass flow rates of steam in the range of its change from 20 kg/s to 40 kg/s. Intensification of heat exchange is provided by the use of highly efficient heat exchange profiled tubes. The study used a set of heat exchange tubes (25 mm in diameter and 1.4 mm wall thickness) with the following values of the distance between the grooves of the profiled tube: 0.007075 m, 0.00875 m, 0.00925 m, 0.0105 m. The effect of the groove depth (from 0.0007 to 0.0009 m) on heat transfer during water vapor condensation on vertical pipes was also studied. The study was carried out for the range of changes in the Reynolds number for the condensate film from 5254.2 to 10508.5. The study obtained data indicating an increase in the heat transfer coefficient on the pipe with an intensifier compared to the heat transfer coefficient on a smooth pipe. This analysis did not take into account the change in tube wall temperature.
dc.format.extent1-6
dc.format.pages6
dc.identifier.citationRymar T. Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System / Tetiana Rymar, Anna Malysheva // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–6.
dc.identifier.citationenRymar T. Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System / Tetiana Rymar, Anna Malysheva // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–6.
dc.identifier.doidoi.org/10.23939/jeecs2024.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64037
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (10), 2024
dc.relation.references[1] Sydorenko, S., & Sydorenko, M. (2023). Intensification of heat transfer in heat exchange equipment during condensation of water vapor after steam turbine installations in nuclear power. Energy Technologies & Resource Saving, 74(1), pp. 40–47. https://doi.org/10.33070/etars.1.2023.04.
dc.relation.references[2] Egorov, M. Y. (2018). Methods of Heat-Exchange Intensification in NPP Equipment. At Energy, 124, 403–407 https://doi.org/10.1007/s10512-018-0430-5
dc.relation.references[3] Bratkovska, K., Liush, Y. (2021). Determination of the electrical power increase at the generator termi-nals of a nuclear power plant unit at different condenser states. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), pp. 60–67. DOI: https://doi.org/10.15587/1729-4061.2021.231765
dc.relation.references[4] Rymar, T. and Kazmiruk, M. (2023). Comparing Heat Transfer Rates of Water Based Nanofluids Using a Figure of Merit, “2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP)”, Bratislava, Slovakia, pp. NEE17-1-NEE17-4. DOI: 10.1109/NAP59739.2023.10310883.
dc.relation.references[5] Pengfei Liu, Jin Yao Ho, Teck Neng Wong, Kok Chuan Toh (2020). Convective filmwise condensation on the outer surface of a vertical tube: A theoretical analysis. International Journal of Heat and Mass Transfer, 161, pp. 120–266. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120266
dc.relation.references[6] Jinshi Wang,Yong Li,Junjie Yan,Ronghai Huang,Xiping Chen, Jiping Liu (2015). Condensation heat transfer of steam on vertical microtubes. Applied Thermal Engineering,88, pp. 185–191. https://doi.org/10.1016/j.applthermaleng.2014.08.058
dc.relation.references[7] Qian, Caifu, Zhiwei Wu, Shihang Wen, Shaoping Gao, and Guomin Qin. (2020) Study of the Mechanical Properties of Highly Efficient Heat Exchange Tubes. Materials, 13, No. 2, pp. 382. https://doi.org/10.3390/ma13020382.
dc.relation.references[8] Havlík, J., & Dlouhý, T. (2015). Condensation of water vapor in a vertical tube condenser. Acta Polytechnica, 55(5), pp. 306–312. https://doi.org/10.14311/AP.2015.55.0306
dc.relation.references[9] Gershuni, A., Pismennyi, E., & Nishchik, A. (2017). Evaporation and condensation devices for passive heat removal systems in nuclear power. Nuclear and radiation safety. No. 1(73), pp. 16–23. https://doi.org/10.32918/nrs.2017.1(73).03 (in Ukrainian).
dc.relation.references[10] Pismennyi, E. N, Razumovskiy, V. G, Maevskiy, E. M, Koloskov, A. E, & Pioro, I. L. (2006). Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes. Proceedings of the 14th International Conference on Nuclear Engineering. Vol. 2: Thermal Hydraulics. Miami, Florida, USA. July 17–20, pp. 523–530. ASME. https://doi.org/10.1115/ICONE14-89483
dc.relation.references[11] Kalynyn, Ye. K., Dreitser, D. A., Yarkho, S. A. (1990). Intensification of heat exchange in channels. M.: Mashynostroenye. 208 р. (in Russian).
dc.relation.referencesen[1] Sydorenko, S., & Sydorenko, M. (2023). Intensification of heat transfer in heat exchange equipment during condensation of water vapor after steam turbine installations in nuclear power. Energy Technologies & Resource Saving, 74(1), pp. 40–47. https://doi.org/10.33070/etars.1.2023.04.
dc.relation.referencesen[2] Egorov, M. Y. (2018). Methods of Heat-Exchange Intensification in NPP Equipment. At Energy, 124, 403–407 https://doi.org/10.1007/s10512-018-0430-5
dc.relation.referencesen[3] Bratkovska, K., Liush, Y. (2021). Determination of the electrical power increase at the generator termi-nals of a nuclear power plant unit at different condenser states. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), pp. 60–67. DOI: https://doi.org/10.15587/1729-4061.2021.231765
dc.relation.referencesen[4] Rymar, T. and Kazmiruk, M. (2023). Comparing Heat Transfer Rates of Water Based Nanofluids Using a Figure of Merit, "2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP)", Bratislava, Slovakia, pp. NEE17-1-NEE17-4. DOI: 10.1109/NAP59739.2023.10310883.
dc.relation.referencesen[5] Pengfei Liu, Jin Yao Ho, Teck Neng Wong, Kok Chuan Toh (2020). Convective filmwise condensation on the outer surface of a vertical tube: A theoretical analysis. International Journal of Heat and Mass Transfer, 161, pp. 120–266. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120266
dc.relation.referencesen[6] Jinshi Wang,Yong Li,Junjie Yan,Ronghai Huang,Xiping Chen, Jiping Liu (2015). Condensation heat transfer of steam on vertical microtubes. Applied Thermal Engineering,88, pp. 185–191. https://doi.org/10.1016/j.applthermaleng.2014.08.058
dc.relation.referencesen[7] Qian, Caifu, Zhiwei Wu, Shihang Wen, Shaoping Gao, and Guomin Qin. (2020) Study of the Mechanical Properties of Highly Efficient Heat Exchange Tubes. Materials, 13, No. 2, pp. 382. https://doi.org/10.3390/ma13020382.
dc.relation.referencesen[8] Havlík, J., & Dlouhý, T. (2015). Condensation of water vapor in a vertical tube condenser. Acta Polytechnica, 55(5), pp. 306–312. https://doi.org/10.14311/AP.2015.55.0306
dc.relation.referencesen[9] Gershuni, A., Pismennyi, E., & Nishchik, A. (2017). Evaporation and condensation devices for passive heat removal systems in nuclear power. Nuclear and radiation safety. No. 1(73), pp. 16–23. https://doi.org/10.32918/nrs.2017.1(73).03 (in Ukrainian).
dc.relation.referencesen[10] Pismennyi, E. N, Razumovskiy, V. G, Maevskiy, E. M, Koloskov, A. E, & Pioro, I. L. (2006). Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes. Proceedings of the 14th International Conference on Nuclear Engineering. Vol. 2: Thermal Hydraulics. Miami, Florida, USA. July 17–20, pp. 523–530. ASME. https://doi.org/10.1115/ICONE14-89483
dc.relation.referencesen[11] Kalynyn, Ye. K., Dreitser, D. A., Yarkho, S. A. (1990). Intensification of heat exchange in channels. M., Mashynostroenye. 208 r. (in Russian).
dc.relation.urihttps://doi.org/10.33070/etars.1.2023.04
dc.relation.urihttps://doi.org/10.1007/s10512-018-0430-5
dc.relation.urihttps://doi.org/10.15587/1729-4061.2021.231765
dc.relation.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2020.120266
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2014.08.058
dc.relation.urihttps://doi.org/10.3390/ma13020382
dc.relation.urihttps://doi.org/10.14311/AP.2015.55.0306
dc.relation.urihttps://doi.org/10.32918/nrs.2017.1(73).03
dc.relation.urihttps://doi.org/10.1115/ICONE14-89483
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectтепловіддача
dc.subjectплівкова конденсація
dc.subjectвертикальний трубчастий конденсатор
dc.subjectпрофільовані теплообмінні трубки
dc.subjectводяна пара
dc.subjectheat transfer
dc.subjectfilm condensation
dc.subjectprofiled heat exchange tubes
dc.subjectvertical tube condenser
dc.subjectwater vapor
dc.titleIntensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System
dc.title.alternativeІнтенсифікація теплообміну під час конденсації пари у технологічному конденсаторі системи розхолоджування енергоблока АЕС
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Rymar_T-Intensification_of_Heat_Transfer_1-6.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Rymar_T-Intensification_of_Heat_Transfer_1-6__COVER.png
Size:
418.07 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: