Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System
dc.citation.epage | 6 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Енергетика та системи керування | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Римар, Тетяна | |
dc.contributor.author | Малишева, Анна | |
dc.contributor.author | Rymar, Tetiana | |
dc.contributor.author | Malysheva, Anna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-10T08:12:22Z | |
dc.date.created | 2024-02-28 | |
dc.date.issued | 2024-02-28 | |
dc.description.abstract | У роботі досліджено теплообмін під час конденсації водяної пари на вертикальних трубах технологічного конденсатора системи розхолоджування енергоблоку АЕС. Чисельне дослідження виконано за різних масових витратах пари в діапазоні їх зміни від 20 кг/с до 40 кг/с. Інтенсифікація теплообміну передбачена за рахунок застосування високоефективних теплообмінних профільованих трубок. Для дослідження використано комплект теплообмінних трубок діаметром 25 мм і товщиною стінки 1,4 мм з різними значеннями відстані між канавками профільованої труби: 0,007075 м; 0,00875 м; 0,00925 м; 0,0105 м. Також досліджувався вплив глибини канавки профільованої труби (у діапазоні від 0,0007 до 0,0009 м) на теплообмін під час конденсації водяної пари на вертикальних трубах. Дослідження виконано для діапазону зміни числа Рейнольдса для конденсатної плівки від 5254,2 до 10508,5. У роботі отримано дані, що вказують на зростання коефіцієнта тепловіддачі на трубі з інтенсифікатором порівняно з коефіцієнтом тепловіддачі на гладкій трубі. У цьому аналізі не враховувалася зміна температури стінки трубки. | |
dc.description.abstract | The paper investigates heat transfer during condensation of water vapor on vertical pipes of the process condenser of the cooling system of a nuclear power unit. The numerical study was performed at different mass flow rates of steam in the range of its change from 20 kg/s to 40 kg/s. Intensification of heat exchange is provided by the use of highly efficient heat exchange profiled tubes. The study used a set of heat exchange tubes (25 mm in diameter and 1.4 mm wall thickness) with the following values of the distance between the grooves of the profiled tube: 0.007075 m, 0.00875 m, 0.00925 m, 0.0105 m. The effect of the groove depth (from 0.0007 to 0.0009 m) on heat transfer during water vapor condensation on vertical pipes was also studied. The study was carried out for the range of changes in the Reynolds number for the condensate film from 5254.2 to 10508.5. The study obtained data indicating an increase in the heat transfer coefficient on the pipe with an intensifier compared to the heat transfer coefficient on a smooth pipe. This analysis did not take into account the change in tube wall temperature. | |
dc.format.extent | 1-6 | |
dc.format.pages | 6 | |
dc.identifier.citation | Rymar T. Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System / Tetiana Rymar, Anna Malysheva // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–6. | |
dc.identifier.citationen | Rymar T. Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System / Tetiana Rymar, Anna Malysheva // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–6. | |
dc.identifier.doi | doi.org/10.23939/jeecs2024.01.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64037 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Енергетика та системи керування, 1 (10), 2024 | |
dc.relation.ispartof | Energy Engineering and Control Systems, 1 (10), 2024 | |
dc.relation.references | [1] Sydorenko, S., & Sydorenko, M. (2023). Intensification of heat transfer in heat exchange equipment during condensation of water vapor after steam turbine installations in nuclear power. Energy Technologies & Resource Saving, 74(1), pp. 40–47. https://doi.org/10.33070/etars.1.2023.04. | |
dc.relation.references | [2] Egorov, M. Y. (2018). Methods of Heat-Exchange Intensification in NPP Equipment. At Energy, 124, 403–407 https://doi.org/10.1007/s10512-018-0430-5 | |
dc.relation.references | [3] Bratkovska, K., Liush, Y. (2021). Determination of the electrical power increase at the generator termi-nals of a nuclear power plant unit at different condenser states. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), pp. 60–67. DOI: https://doi.org/10.15587/1729-4061.2021.231765 | |
dc.relation.references | [4] Rymar, T. and Kazmiruk, M. (2023). Comparing Heat Transfer Rates of Water Based Nanofluids Using a Figure of Merit, “2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP)”, Bratislava, Slovakia, pp. NEE17-1-NEE17-4. DOI: 10.1109/NAP59739.2023.10310883. | |
dc.relation.references | [5] Pengfei Liu, Jin Yao Ho, Teck Neng Wong, Kok Chuan Toh (2020). Convective filmwise condensation on the outer surface of a vertical tube: A theoretical analysis. International Journal of Heat and Mass Transfer, 161, pp. 120–266. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120266 | |
dc.relation.references | [6] Jinshi Wang,Yong Li,Junjie Yan,Ronghai Huang,Xiping Chen, Jiping Liu (2015). Condensation heat transfer of steam on vertical microtubes. Applied Thermal Engineering,88, pp. 185–191. https://doi.org/10.1016/j.applthermaleng.2014.08.058 | |
dc.relation.references | [7] Qian, Caifu, Zhiwei Wu, Shihang Wen, Shaoping Gao, and Guomin Qin. (2020) Study of the Mechanical Properties of Highly Efficient Heat Exchange Tubes. Materials, 13, No. 2, pp. 382. https://doi.org/10.3390/ma13020382. | |
dc.relation.references | [8] Havlík, J., & Dlouhý, T. (2015). Condensation of water vapor in a vertical tube condenser. Acta Polytechnica, 55(5), pp. 306–312. https://doi.org/10.14311/AP.2015.55.0306 | |
dc.relation.references | [9] Gershuni, A., Pismennyi, E., & Nishchik, A. (2017). Evaporation and condensation devices for passive heat removal systems in nuclear power. Nuclear and radiation safety. No. 1(73), pp. 16–23. https://doi.org/10.32918/nrs.2017.1(73).03 (in Ukrainian). | |
dc.relation.references | [10] Pismennyi, E. N, Razumovskiy, V. G, Maevskiy, E. M, Koloskov, A. E, & Pioro, I. L. (2006). Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes. Proceedings of the 14th International Conference on Nuclear Engineering. Vol. 2: Thermal Hydraulics. Miami, Florida, USA. July 17–20, pp. 523–530. ASME. https://doi.org/10.1115/ICONE14-89483 | |
dc.relation.references | [11] Kalynyn, Ye. K., Dreitser, D. A., Yarkho, S. A. (1990). Intensification of heat exchange in channels. M.: Mashynostroenye. 208 р. (in Russian). | |
dc.relation.referencesen | [1] Sydorenko, S., & Sydorenko, M. (2023). Intensification of heat transfer in heat exchange equipment during condensation of water vapor after steam turbine installations in nuclear power. Energy Technologies & Resource Saving, 74(1), pp. 40–47. https://doi.org/10.33070/etars.1.2023.04. | |
dc.relation.referencesen | [2] Egorov, M. Y. (2018). Methods of Heat-Exchange Intensification in NPP Equipment. At Energy, 124, 403–407 https://doi.org/10.1007/s10512-018-0430-5 | |
dc.relation.referencesen | [3] Bratkovska, K., Liush, Y. (2021). Determination of the electrical power increase at the generator termi-nals of a nuclear power plant unit at different condenser states. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), pp. 60–67. DOI: https://doi.org/10.15587/1729-4061.2021.231765 | |
dc.relation.referencesen | [4] Rymar, T. and Kazmiruk, M. (2023). Comparing Heat Transfer Rates of Water Based Nanofluids Using a Figure of Merit, "2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP)", Bratislava, Slovakia, pp. NEE17-1-NEE17-4. DOI: 10.1109/NAP59739.2023.10310883. | |
dc.relation.referencesen | [5] Pengfei Liu, Jin Yao Ho, Teck Neng Wong, Kok Chuan Toh (2020). Convective filmwise condensation on the outer surface of a vertical tube: A theoretical analysis. International Journal of Heat and Mass Transfer, 161, pp. 120–266. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120266 | |
dc.relation.referencesen | [6] Jinshi Wang,Yong Li,Junjie Yan,Ronghai Huang,Xiping Chen, Jiping Liu (2015). Condensation heat transfer of steam on vertical microtubes. Applied Thermal Engineering,88, pp. 185–191. https://doi.org/10.1016/j.applthermaleng.2014.08.058 | |
dc.relation.referencesen | [7] Qian, Caifu, Zhiwei Wu, Shihang Wen, Shaoping Gao, and Guomin Qin. (2020) Study of the Mechanical Properties of Highly Efficient Heat Exchange Tubes. Materials, 13, No. 2, pp. 382. https://doi.org/10.3390/ma13020382. | |
dc.relation.referencesen | [8] Havlík, J., & Dlouhý, T. (2015). Condensation of water vapor in a vertical tube condenser. Acta Polytechnica, 55(5), pp. 306–312. https://doi.org/10.14311/AP.2015.55.0306 | |
dc.relation.referencesen | [9] Gershuni, A., Pismennyi, E., & Nishchik, A. (2017). Evaporation and condensation devices for passive heat removal systems in nuclear power. Nuclear and radiation safety. No. 1(73), pp. 16–23. https://doi.org/10.32918/nrs.2017.1(73).03 (in Ukrainian). | |
dc.relation.referencesen | [10] Pismennyi, E. N, Razumovskiy, V. G, Maevskiy, E. M, Koloskov, A. E, & Pioro, I. L. (2006). Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes. Proceedings of the 14th International Conference on Nuclear Engineering. Vol. 2: Thermal Hydraulics. Miami, Florida, USA. July 17–20, pp. 523–530. ASME. https://doi.org/10.1115/ICONE14-89483 | |
dc.relation.referencesen | [11] Kalynyn, Ye. K., Dreitser, D. A., Yarkho, S. A. (1990). Intensification of heat exchange in channels. M., Mashynostroenye. 208 r. (in Russian). | |
dc.relation.uri | https://doi.org/10.33070/etars.1.2023.04 | |
dc.relation.uri | https://doi.org/10.1007/s10512-018-0430-5 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2021.231765 | |
dc.relation.uri | https://doi.org/10.1016/j.ijheatmasstransfer.2020.120266 | |
dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2014.08.058 | |
dc.relation.uri | https://doi.org/10.3390/ma13020382 | |
dc.relation.uri | https://doi.org/10.14311/AP.2015.55.0306 | |
dc.relation.uri | https://doi.org/10.32918/nrs.2017.1(73).03 | |
dc.relation.uri | https://doi.org/10.1115/ICONE14-89483 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | тепловіддача | |
dc.subject | плівкова конденсація | |
dc.subject | вертикальний трубчастий конденсатор | |
dc.subject | профільовані теплообмінні трубки | |
dc.subject | водяна пара | |
dc.subject | heat transfer | |
dc.subject | film condensation | |
dc.subject | profiled heat exchange tubes | |
dc.subject | vertical tube condenser | |
dc.subject | water vapor | |
dc.title | Intensification of Heat Transfer during Steam Condensation in Process Condenser of NPP Unit Cooling System | |
dc.title.alternative | Інтенсифікація теплообміну під час конденсації пари у технологічному конденсаторі системи розхолоджування енергоблока АЕС | |
dc.type | Article |
Files
License bundle
1 - 1 of 1