Особливості одержання дисперсій поліакриламідних гідрогелів, наповнених магнетитом

dc.citation.epage165
dc.citation.issue2
dc.citation.spage159
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorНагорняк, М. І.
dc.contributor.authorВороновська, А. В.
dc.contributor.authorЯковів, М. В.
dc.contributor.authorМайкович, О. В.
dc.contributor.authorВарваренко, С. М.
dc.contributor.authorNahorniak, M. I.
dc.contributor.authorVoronovska, A. V.
dc.contributor.authorYakoviv, M. V.
dc.contributor.authorMaikovych, O. V.
dc.contributor.authorVarvarenko, S. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T09:14:40Z
dc.date.available2020-03-02T09:14:40Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractРозглянуто проблеми введення наночастинок магнетиту в гідрогелеві дисперсії, які створені на основі поліакриламіду. Утворення полімерного каркаса гідрогелю відбувалось за рахунок збалансованої кількості поперечних зшивок між поліакриламідом та полі-N- гідроксиметилакриламідом. Вивчено структурування поліакриламіду та полі-N- (гідроксиметил)акриламіду в присутності магнетиту та солей феруму – прекурсорів магнетиту та показано вплив добавок на параметри тривимірної сітки гідрогелю. Проведено оптимізацію складу та вивчення стабільності гідрогелевої композиції у зворотних емульсіях. На основі проведених досліджень синтезовано магніточутливий матеріал у вигляді дисперсій гідрогелю з інкорпорованими частинками магнетиту.
dc.description.abstractIn the article are showed the problems of introduction of magnetite nanoparticles into the hydrogel dispersions, which were created, based on the polyacrylamide. The formation of the polymeric framework of the hydrogel occur due to the balanced number of cross-linkings between polyacrylamide and poly-Nhydroxymethylacrylamide. The structure of polyacrylamide and poly-N-(hydroxymethyl) acrylamide were studied in the presence of magnetite and ferrum salts – magnetite precursor and were shown the influence of additives on the parameters of a three-dimensional grid of hydrogel. Moreover, the optimization of the composition and the study of the stability of the hydrogel composition in reverse emulsions were carried out. Based on the conducted research, the magnetic-sensitive material was synthesized in the form of hydrogel dispersions with incorporated magnetite particles.
dc.format.extent159-165
dc.format.pages7
dc.identifier.citationОсобливості одержання дисперсій поліакриламідних гідрогелів, наповнених магнетитом / М. І. Нагорняк, А. В. Вороновська, М. В. Яковів, О. В. Майкович, С. М. Варваренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 159–165.
dc.identifier.citationenReceipt features of polyacrylamide hydrogel dispersions filled with magnetite / M. I. Nahorniak, A. V. Voronovska, M. V. Yakoviv, O. V. Maikovych, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 159–165.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46402
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (2), 2019
dc.relation.references1. Van Krevelen, D.V. (1976). Svoistva y khymycheskoe stroenye polymerov, M., Khymyia, 413 p.
dc.relation.references2. Toroptseva, A. M., Belohorodskaia, K. V., Bondarenko, V. M. (1972). Laboratornyi praktikum po khimii i tekhnolohii vysokomolekuliarnykh soedinenii, L., Khimiia, 416 p.
dc.relation.references3. Lavrova, Y.S. (1983). Praktykum po kolloydnoi khimii. Moskva, Vysshaia shkola, 216 p.
dc.relation.references4. Tarnavchyk, I. Т., Samaryk, V. Ya, Voronov, A. S., Varvarenko, S. М., Nosova, N. G., Коhut, А. М., Voronov, S. A. (2008). Formuvannia hidrohelei pryshcheplenykh do polimernoi poverkhni dlia biomedychnykh zastosuvan. Dopovidi NAN Ukrainy, 8, 105-120.
dc.relation.references5. Samaryk, V. Ya., Varvarenko, S. M., Tarnavchyk, I. T., Nosova, N. G., Puzko N. V., Voronov S. A. (2008). Formation of polymer nanolayers with special properties at Polymer surfaces. Macromolecular Symposia, 267, 113-117.
dc.relation.references6. Tarnavchyk, I. Т., Samaryk, V. Ya, Voronov, A. S., Varvarenko, S. М., Nosova, N. G., Коhut, А. М., Voronov, S. A. (2008). Formuvannia porystykh hidroheliv z rehulovanymy fizyko-mekhanichnymy vlastyvostiamy. Dopovidi NAN Ukrainy, 9, 101-113.
dc.relation.references7. Samaryk, V. Ya, Varvarenko, S. M., Nosova, N. G., Fihurka, N. V., Musyanovych, A. V., Landfester, K. O., Popadyuk, N. Y., Voronov, S. A. (2017). Оptical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol., 11(4), 449-453.
dc.relation.references8. Shanmuganathan S., Shanumugasundaram, N., Adhirajan, N., Ramyaа Lakshmi, T. S., Babu, M.(2008). Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydrate Polymers, 73, 201-211.
dc.relation.references9. Jose, S., Fangueiro, J. F., Smitha, J., Cinu, T. A., Chacko, A. J., Premaletha, K., Souto, E. B. (2012). Crosslinked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Colloids and Surfaces B: Biointerfaces, 92, 175-179.
dc.relation.references10. Rajesh R. Dubey, Rajesh H. Parikh. (2004). Two-Stage optimization process for formulation of chitosan microspheres. AAPharmSciTech, 5(1), Article 5.
dc.relation.references11. Peng H., Xiong H., Li J., Xie M., Liu Y., Bai C., Chen L. (2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23-28.
dc.relation.references12. Rokhade, A. P., Shelke, N. B., Patil, S. A., Aminabhavi, T. M. (2007). Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydrate Polymers. 69(4), 678-687.
dc.relation.references13. Saha, T. K., Ichikawa, H., Fukumori, Y. (2006). Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy. Carbohydrate Research, 341(17), 2835-2841.
dc.relation.references14. Akamatsu, K., Ikeuchi, Y., Nakao, A., Nakao, S. (2012) Size-controlled and monodisperse enzymeencapsulated chitosan microspheres developed by the SPG membrane emulsification technique. Journal of Colloid and Interface Science, 371, P. 46-51.
dc.relation.references15. Wang L.-Y., Gu Y.-H., Su Z.-G., Ma G.-H. (2006). Preparation and improvement of release behavior of chitosan microspheres containing insulin. International Journal of Pharmaceutics, 311(1-2), 187-195.
dc.relation.references16. WeiW., Ma G.-H., Wang L.-Y., Wu J., Su Z.-G. (2010). Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomaterialia, 6(1), 205–209;
dc.relation.references17. El-Gibaly, I. (2002). Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. International Journal of Pharmaceutics, 249(1-2), 7-21.
dc.relation.referencesen1. Van Krevelen, D.V. (1976). Svoistva y khymycheskoe stroenye polymerov, M., Khymyia, 413 p.
dc.relation.referencesen2. Toroptseva, A. M., Belohorodskaia, K. V., Bondarenko, V. M. (1972). Laboratornyi praktikum po khimii i tekhnolohii vysokomolekuliarnykh soedinenii, L., Khimiia, 416 p.
dc.relation.referencesen3. Lavrova, Y.S. (1983). Praktykum po kolloydnoi khimii. Moskva, Vysshaia shkola, 216 p.
dc.relation.referencesen4. Tarnavchyk, I. T., Samaryk, V. Ya, Voronov, A. S., Varvarenko, S. M., Nosova, N. G., Kohut, A. M., Voronov, S. A. (2008). Formuvannia hidrohelei pryshcheplenykh do polimernoi poverkhni dlia biomedychnykh zastosuvan. Dopovidi NAN Ukrainy, 8, 105-120.
dc.relation.referencesen5. Samaryk, V. Ya., Varvarenko, S. M., Tarnavchyk, I. T., Nosova, N. G., Puzko N. V., Voronov S. A. (2008). Formation of polymer nanolayers with special properties at Polymer surfaces. Macromolecular Symposia, 267, 113-117.
dc.relation.referencesen6. Tarnavchyk, I. T., Samaryk, V. Ya, Voronov, A. S., Varvarenko, S. M., Nosova, N. G., Kohut, A. M., Voronov, S. A. (2008). Formuvannia porystykh hidroheliv z rehulovanymy fizyko-mekhanichnymy vlastyvostiamy. Dopovidi NAN Ukrainy, 9, 101-113.
dc.relation.referencesen7. Samaryk, V. Ya, Varvarenko, S. M., Nosova, N. G., Fihurka, N. V., Musyanovych, A. V., Landfester, K. O., Popadyuk, N. Y., Voronov, S. A. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol., 11(4), 449-453.
dc.relation.referencesen8. Shanmuganathan S., Shanumugasundaram, N., Adhirajan, N., Ramyaa Lakshmi, T. S., Babu, M.(2008). Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydrate Polymers, 73, 201-211.
dc.relation.referencesen9. Jose, S., Fangueiro, J. F., Smitha, J., Cinu, T. A., Chacko, A. J., Premaletha, K., Souto, E. B. (2012). Crosslinked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Colloids and Surfaces B: Biointerfaces, 92, 175-179.
dc.relation.referencesen10. Rajesh R. Dubey, Rajesh H. Parikh. (2004). Two-Stage optimization process for formulation of chitosan microspheres. AAPharmSciTech, 5(1), Article 5.
dc.relation.referencesen11. Peng H., Xiong H., Li J., Xie M., Liu Y., Bai C., Chen L. (2010). Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23-28.
dc.relation.referencesen12. Rokhade, A. P., Shelke, N. B., Patil, S. A., Aminabhavi, T. M. (2007). Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydrate Polymers. 69(4), 678-687.
dc.relation.referencesen13. Saha, T. K., Ichikawa, H., Fukumori, Y. (2006). Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy. Carbohydrate Research, 341(17), 2835-2841.
dc.relation.referencesen14. Akamatsu, K., Ikeuchi, Y., Nakao, A., Nakao, S. (2012) Size-controlled and monodisperse enzymeencapsulated chitosan microspheres developed by the SPG membrane emulsification technique. Journal of Colloid and Interface Science, 371, P. 46-51.
dc.relation.referencesen15. Wang L.-Y., Gu Y.-H., Su Z.-G., Ma G.-H. (2006). Preparation and improvement of release behavior of chitosan microspheres containing insulin. International Journal of Pharmaceutics, 311(1-2), 187-195.
dc.relation.referencesen16. WeiW., Ma G.-H., Wang L.-Y., Wu J., Su Z.-G. (2010). Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomaterialia, 6(1), 205–209;
dc.relation.referencesen17. El-Gibaly, I. (2002). Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. International Journal of Pharmaceutics, 249(1-2), 7-21.
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.subjectполіакриламід
dc.subjectполі-N-гідроксиметилакриламід
dc.subjectгідрогелі
dc.subjectдисперсія
dc.subjectмагнетит
dc.subjectpolyacrylamide
dc.subjectpoly-N-hydroxymethylacrylamide
dc.subjecthydrogels
dc.subjectdispersion
dc.subjectmagnetite
dc.titleОсобливості одержання дисперсій поліакриламідних гідрогелів, наповнених магнетитом
dc.title.alternativeReceipt features of polyacrylamide hydrogel dispersions filled with magnetite
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2n2_Nahorniak_M_I-Receipt_features_of_159-165.pdf
Size:
875.2 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2n2_Nahorniak_M_I-Receipt_features_of_159-165__COVER.png
Size:
453.96 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.14 KB
Format:
Plain Text
Description: