Algorithm of the successive approximation method for optimal control problems with phase restrictions for mechanics tasks

dc.citation.epage749
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage734
dc.contributor.affiliationДніпровський національний університет імені Олеся Гончара
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationOles Honchar Dnipro National University
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДзюба, А.
dc.contributor.authorТорський, А.
dc.contributor.authorDzyuba, A.
dc.contributor.authorTorskyy, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:02Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractЗапропоновано алгоритм методу послідовних наближень для задач оптимального керування за наявності довільних обмежень на керуючі та фазові змінні. Підхід базується на процедурах послідовного задоволення необхідних умов оптимальності у вигляді принципу максимуму Понтрягіна. Продемонстровано застосування алгоритму для задач оптимізації ваги силових елементів конструкцій за наявності обмежень міцності, жорсткості та технологічних вимог.
dc.description.abstractThe algorithm of the method of successive approximations for problems of optimal control in the presence of arbitrary restrictions on control and phase variables is proposed. The approach is based on the procedures of consistent satisfaction of the necessary conditions of optimality in the form of Pontryagin's maximum principle. The algorithm application for the problems of weight optimization of power elements of structures in the presence of constraints of strength, rigidity, and technological requirements is demonstrated.
dc.format.extent734-749
dc.format.pages16
dc.identifier.citationDzyuba A. Algorithm of the successive approximation method for optimal control problems with phase restrictions for mechanics tasks / A. Dzyuba, A. Torskyy // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 734–749.
dc.identifier.citationenDzyuba A. Algorithm of the successive approximation method for optimal control problems with phase restrictions for mechanics tasks / A. Dzyuba, A. Torskyy // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 734–749.
dc.identifier.doidoi.org/10.23939/mmc2022.03.734
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63470
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Bryson A. E., Yu-Chi Ho. Applied Optimal Control. Toronto, London (1969).
dc.relation.references[2] Dzyuba A. P., Sirenko V. N., Dzyuba A. A., Safronova I. A. Models and Algorithms for Optimizing Elements of Heterogeneous Shell Structures. Actual problems of mechanics: Monograph ed. by N. V. Polyakova. Dnipro, Lira. 225–244 (2018).
dc.relation.references[3] Fedorenko R. P. Approximate Solution of Optimal Control Problems. Moscow, Nauka (1978), (in Russian).
dc.relation.references[4] Gornov A. Yu. Algorithms for Solving Optimal Control Problems with Phase Constraints. Computational technologies. 15 (2), 24–30 (2010), (in Russian).
dc.relation.references[5] Karamzin D., Pereira F. L. On a Few Questions Regarding the Study of State-Сonstrained Problems in Optimal Control. Journal of Optimization Theory and Applications. 180, 235–255 (2019).
dc.relation.references[6] Srochko V. A. Iterative Methods for Solving Optimal Control Problems. Moscow, Fizmatgiz (2000), (in Russian).
dc.relation.references[7] Aisagaliev S., Zhunussova Zh., Akca H. Construction of a Solution for Optimal Control Problem with Phase and Integral Constructs. International Journal of Mathematics and Physics. 10 (1), 11–22 (2019).
dc.relation.references[8] Buldaev A. S., Burlakov I. D. Nonlocal Descent Method on the Set of Admissible Controls in Optimal Control Problems with Phase Constraints. Vesnik BSU. Series: Mathematics, Informatics. 3, 42–59 (2019).
dc.relation.references[9] Diveev A., Sofronova E., Zelinka I. Optimal Control Problem Solution With Phase Constraints for Group of Robots by Pontreagin Maximum Principle and Evolutionary Algorithm. Mathematics. 8 (12), 2105 (2020).
dc.relation.references[10] Trunin D. O. On One Procedure of Non-local Improvement of Controls in Systems Quadratic in State with Terminal Constraints. Bulletin of BSU. Ser.: Mathematics, Informatics. 2, 42–49 (2018), (in Russian).
dc.relation.references[11] Anorov V. Ya. The Maximum Principle for Processes with General Constraints, Automation and remote control. Part 1 (3), 5–15, Part 2 (4), 5–17 (1967).
dc.relation.references[12] Pontryagin L. S., Bolteanskii V. G., Gamkrelidze R. V., Mishchenko E. F. The Mathematical Theory of Optimal Processes. Interscience, New York, NY, USA (1962).
dc.relation.references[13] Bertsekas D. P. Constrained Optimization and Lagrange Multipliers Methods. Athena Scientific, Belmot, Mass. (1996).
dc.relation.references[14] Himmelblau D. M. Applied Nonlsnear Programming. Austsn. Texas (1972).
dc.relation.references[15] Krylov A. I., Chernousko F. L. An algorithm for the method of successive approximations in optimal control problems. USSR Computational Mathematics and Mathematical Physics. 12 (1), 15–38 (1972).
dc.relation.references[16] Voloshin V. V. On the Method of Successive Approximations for Optimal Control Problems. Discrete control systems: col. of sci. art., Kyiv, 24–32 (1972).
dc.relation.references[17] Dzyuba A. P., Safronova I. A., Levitina L. D. Algorithm for Computational Costs Reducing in Problems of Calculation of Asymmetrically Loaded Shells of Rotation. Strength of Materials and Theory of Structures. 105, 99–113 (2020).
dc.relation.references[18] Godunov S. K. Numerical solution of boundary-value problems for systems of linear ordinary differential equations. Uspekhi Matematicheskikh Nauk. 16 (3), 171–174 (1961), (in Russian).
dc.relation.references[19] Bulakajev P. I., Dzjuba A. P. An Algorithm for the Prediction of Search Trajectory in Nonlinear Programming Problems Optimum Design. Structural Optimization. 13 (2,3), 199–202 (1997).
dc.relation.references[20] Malkov V. P., Ugodchikov A. G. Optimization of Elastic Systems. Moscow, Nauka (1981), (in Russian).
dc.relation.references[21] Shamansky V. E. Methods for the numerical solution of boundary value problems on the computer. Kyiv, Publishing house of the Academy of Sciences of the Ukrainian SSR. Kyiv, Naukova Dumka (1963) Part 1, (1966) Part 2, (in Russian).
dc.relation.references[22] Dzyuba A. P., Dzyuba A. А., Levitina L. D., Safronova I. А. Mathematical Simulation of Deformation for the Rotation Shells with Variable Wall Thickness. Journal of Optimization, Differential Equations and Their Applications. 29 (1), 79–95 (2021).
dc.relation.referencesen[1] Bryson A. E., Yu-Chi Ho. Applied Optimal Control. Toronto, London (1969).
dc.relation.referencesen[2] Dzyuba A. P., Sirenko V. N., Dzyuba A. A., Safronova I. A. Models and Algorithms for Optimizing Elements of Heterogeneous Shell Structures. Actual problems of mechanics: Monograph ed. by N. V. Polyakova. Dnipro, Lira. 225–244 (2018).
dc.relation.referencesen[3] Fedorenko R. P. Approximate Solution of Optimal Control Problems. Moscow, Nauka (1978), (in Russian).
dc.relation.referencesen[4] Gornov A. Yu. Algorithms for Solving Optimal Control Problems with Phase Constraints. Computational technologies. 15 (2), 24–30 (2010), (in Russian).
dc.relation.referencesen[5] Karamzin D., Pereira F. L. On a Few Questions Regarding the Study of State-Sonstrained Problems in Optimal Control. Journal of Optimization Theory and Applications. 180, 235–255 (2019).
dc.relation.referencesen[6] Srochko V. A. Iterative Methods for Solving Optimal Control Problems. Moscow, Fizmatgiz (2000), (in Russian).
dc.relation.referencesen[7] Aisagaliev S., Zhunussova Zh., Akca H. Construction of a Solution for Optimal Control Problem with Phase and Integral Constructs. International Journal of Mathematics and Physics. 10 (1), 11–22 (2019).
dc.relation.referencesen[8] Buldaev A. S., Burlakov I. D. Nonlocal Descent Method on the Set of Admissible Controls in Optimal Control Problems with Phase Constraints. Vesnik BSU. Series: Mathematics, Informatics. 3, 42–59 (2019).
dc.relation.referencesen[9] Diveev A., Sofronova E., Zelinka I. Optimal Control Problem Solution With Phase Constraints for Group of Robots by Pontreagin Maximum Principle and Evolutionary Algorithm. Mathematics. 8 (12), 2105 (2020).
dc.relation.referencesen[10] Trunin D. O. On One Procedure of Non-local Improvement of Controls in Systems Quadratic in State with Terminal Constraints. Bulletin of BSU. Ser., Mathematics, Informatics. 2, 42–49 (2018), (in Russian).
dc.relation.referencesen[11] Anorov V. Ya. The Maximum Principle for Processes with General Constraints, Automation and remote control. Part 1 (3), 5–15, Part 2 (4), 5–17 (1967).
dc.relation.referencesen[12] Pontryagin L. S., Bolteanskii V. G., Gamkrelidze R. V., Mishchenko E. F. The Mathematical Theory of Optimal Processes. Interscience, New York, NY, USA (1962).
dc.relation.referencesen[13] Bertsekas D. P. Constrained Optimization and Lagrange Multipliers Methods. Athena Scientific, Belmot, Mass. (1996).
dc.relation.referencesen[14] Himmelblau D. M. Applied Nonlsnear Programming. Austsn. Texas (1972).
dc.relation.referencesen[15] Krylov A. I., Chernousko F. L. An algorithm for the method of successive approximations in optimal control problems. USSR Computational Mathematics and Mathematical Physics. 12 (1), 15–38 (1972).
dc.relation.referencesen[16] Voloshin V. V. On the Method of Successive Approximations for Optimal Control Problems. Discrete control systems: col. of sci. art., Kyiv, 24–32 (1972).
dc.relation.referencesen[17] Dzyuba A. P., Safronova I. A., Levitina L. D. Algorithm for Computational Costs Reducing in Problems of Calculation of Asymmetrically Loaded Shells of Rotation. Strength of Materials and Theory of Structures. 105, 99–113 (2020).
dc.relation.referencesen[18] Godunov S. K. Numerical solution of boundary-value problems for systems of linear ordinary differential equations. Uspekhi Matematicheskikh Nauk. 16 (3), 171–174 (1961), (in Russian).
dc.relation.referencesen[19] Bulakajev P. I., Dzjuba A. P. An Algorithm for the Prediction of Search Trajectory in Nonlinear Programming Problems Optimum Design. Structural Optimization. 13 (2,3), 199–202 (1997).
dc.relation.referencesen[20] Malkov V. P., Ugodchikov A. G. Optimization of Elastic Systems. Moscow, Nauka (1981), (in Russian).
dc.relation.referencesen[21] Shamansky V. E. Methods for the numerical solution of boundary value problems on the computer. Kyiv, Publishing house of the Academy of Sciences of the Ukrainian SSR. Kyiv, Naukova Dumka (1963) Part 1, (1966) Part 2, (in Russian).
dc.relation.referencesen[22] Dzyuba A. P., Dzyuba A. A., Levitina L. D., Safronova I. A. Mathematical Simulation of Deformation for the Rotation Shells with Variable Wall Thickness. Journal of Optimization, Differential Equations and Their Applications. 29 (1), 79–95 (2021).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectметод послідовних наближень
dc.subjectпринцип максимуму Понтрягіна
dc.subjectфазові та проміжні обмеження
dc.subjectоптимальне проектування структур
dc.subjectsuccessive approximations method
dc.subjectPontryagin’s maximum principle
dc.subjectphase and terminal constraints
dc.subjectoptimal design of structures
dc.titleAlgorithm of the successive approximation method for optimal control problems with phase restrictions for mechanics tasks
dc.title.alternativeАлгоритм методу послідовних наближень для задач оптимального керування з фазовим обмеженням для задач механіки
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Dzyuba_A-Algorithm_of_the_successive_734-749.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Dzyuba_A-Algorithm_of_the_successive_734-749__COVER.png
Size:
409.35 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: