Optimization of physical instruments’ characteristics with topsis

dc.citation.epage9
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage1
dc.contributor.affiliationConcordia University
dc.contributor.affiliationUniversity of Quebec in Montreal
dc.contributor.authorJavanbakht, Taraneh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-15T06:49:28Z
dc.date.available2023-09-15T06:49:28Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractThe present study focuses on the characteristics optimization of the physical instruments with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The hypothesis in this research work was that the characteristics of spectrometers and rheometers could affect their rankings, which in turn could be influenced by the underestimation of their cost criterion. In this paper, the characteristics optimization of the FTIR spectrometers and rheometers was carried out with TOPSIS. Moreover, its modified algorithm was also used in order to analyze the inappropriate consideration of these instruments due to category confusion. The modification of TOPSIS helped obtain an automated decision-making method for the treatment of data. The results showed that the rankings of the FTIR spectrometers and rheometers were different as expected. Moreover, the rankings of the FTIR spectrometers were different with using the unmodified and modified TOPSIS; however, that of the rheometers did not change. The change in the ranking of the FTIR spectrometers was due to the application of the fuzzy disjunction in the TOPSIS code. In this case, the first and second candidates were placed in the first and second positions, respectively, whereas the second candidate had a better rank than the first one in the analysis with the unmodified TOPSIS code. The rank improvement of the first candidate in the category of FTIR spectrometers after the modification of the TOPSIS code was also observed. The results of this work can be used in mechanical engineering and materials science as the appropriate use of instruments in these fields depends on the consideration of their characteristics for which their optimization in comparison with those of other instruments could provide interesting results. Such investigations would provide complementary data for the experimental approaches in further applications.
dc.format.extent1-9
dc.format.pages9
dc.identifier.citationJavanbakht T. Optimization of physical instruments’ characteristics with topsis / Taraneh Javanbakht // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 3. — P. 1–9.
dc.identifier.citationenJavanbakht T. Optimization of physical instruments’ characteristics with topsis / Taraneh Javanbakht // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 8. — No 3. — P. 1–9.
dc.identifier.doidoi.org/10.23939/ujmems2022.03.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60090
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (8), 2022
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (8), 2022
dc.relation.references[1] Guo X. et al. “Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy”, RSC Adv., vol. 8, pp. 4214–4220, 2018, https://doi.org/10.1039/C7RA09894D
dc.relation.references[2] Hernández-Rangel F. J. et al. “Continuous improvement process in the development of alow-cost rotational rheometer”, Processes, vol. 8, 935, 2020, https://doi.org/10.3390/pr8080935
dc.relation.references[3] Feng T. et al. “Reduction-responsive carbon dots for real-time ratiometric monitoring of anticancer prodrug activation in living cells”, ACS Biomat. Sci. Eng., vol. 3, pp. 1535–1541, 2017, https://doi.org/10.1021/acsbiomaterials.7b00264
dc.relation.references[4] Ghanbari A. et al. “Experimental methods in chemical engineering: Rheometry”, The Canadian Journal of Chemical Engineering, vol. 98, 2020, https://doi.org/10.1002/cjce.23749
dc.relation.references[5] Kim Y. et al. “Investigation of rheological properties of blended cement pastes using rotational viscometer and dynamic shear rheometer”, Advances in Materials Science and Engineering, vol. 2018, pp. 1–6, 2018, https://doi.org/10.1155/2018/6303681
dc.relation.references[6] Kamnev A. A. et al. “Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample peparation effects”, Molecules, vol. 26, 1146, 2021, https://doi.org/10.3390/molecules26041146
dc.relation.references[7] Javanbakht T. et al. “Correlation between physicochemical properties of superparamagnetic iron oxide nanoparticles and their reactivity with hydrogen peroxide”, Canadian Journal of Chemistry, vol. 98, pp. 601–608, 2020, https://doi.org/10.1139/cjc-2020-0087
dc.relation.references[8] Javanbakht T. et al. “Comparative study of antibiofilm activity and physicochemical properties of microelectrode arrays”, Microelectronic Engineering, vol. 229, 111305, 2020, https://doi.org/10.1016/j.mee.2020.111305
dc.relation.references[9] Chilufya L. “Hydrothermal synthesis and characterization of tungsten oxide containing organic-inorganic hybrid material”, Thesis, Izmir Institute of Technology, 2019.
dc.relation.references[10] Mudunkotuwa I. A. et al. “ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media”, Analyst, vol. 139, pp. 870–881, 2014, https://doi.org/10.1039/C3AN01684F
dc.relation.references[11] Keša P. et al. “Photoacoustic properties of polypyrrole nanoparticles”, Nanomaterials, vol. 11, 9, 2457, 2021, https://doi.org/10.3390/nano11092457
dc.relation.references[12] Guo Y. et al. “FTIR microspectroscopy of particular liptinite- (lopinite-) rich, Late Permian coals from Southern China”, International Journal of Coal Geology, vol. 29, pp. 187–197, 1996, https://doi.org/10.1016/0166-5162(95)00024-0
dc.relation.references[13] Javanbakht T. and David E. “Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol”, Journal of Thermoplastic Composite Materials, vol. 35, pp. 651–664, 2020, https://doi.org/10.1177/0892705720912767
dc.relation.references[14] McKenna G. B. “Deformation and flow of matter : Interrogating the physics of materials using rheological methods”, J. Rheol., vol. 56, pp. 113–158, 2012, https://doi.org/10.1122/1.3671401
dc.relation.references[15] Bae J.-E. et al. “Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear”, Rheologica Acta, vol. 52, pp. 841–857, 2013, https://doi.org/10.1007/s00397-013-0720-8
dc.relation.references[16] Stickel J. J. et al. “Connecting large amplitude oscillatory shear rheology to steady simple shear rheology and application to biomass slurries”, Applied Rheology, vol. 24, pp. 1–10, 2014.
dc.relation.references[17] Tewari P. C. et al. “Ranking of sintered material for high loaded automobile application by applying entropy-TOPSIS method”, Materials Today: Proceedings, vol. 2, pp. 2375–2370, 2015, https://doi.org/10.1016/j.matpr.2015.07.306
dc.relation.references[18] Bakhoum E. S. et al. “A hybrid approach using AHP–TOPSIS–entropy methods for sustainable ranking of structural materials”, International Journal of Sustainable Engineering, vol. 6, pp. 212–224, 2013, https://doi.org/10.1080/19397038.2012.719553
dc.relation.references[19] Jahan A. et al. “A target-based normalization technique for materials selection”, Materials and Design, vol. 35, pp. 647–654, 2012, https://doi.org/10.1016/j.matdes.2011.09.005
dc.relation.references[20] Mathiyazhagan K., Gnanavelbabu A., and Prabhuraj B. L. “A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches”, Journal of Advances in Management Research, Emerald Group Publishing, vol. 16, pp. 234–259, 2019, https://doi.org/10.1108/JAMR-09-2018-0085
dc.relation.references[21] Swapna D., Rao C. S., Kumar S., and Radhika S. “AHP and TOPSIS based selection of aluminium alloy for automobile panels”, Journal of Mechanical and Energy Engineering, vol. 3, pp. 43–50, 2019, https://doi.org/10.30464/jmee.2019.3.1.43
dc.relation.references[22] Calizaya A., et al. “Multi-criteria decision analysis (MCDA) for integrated water resources management (IWRM) in the lake Poopo basin, Bolivia”, Water Resour Manage, vol. 24, pp. 2267–2289, 2010, https://doi.org/10.1007/s11269-009-9551-x
dc.relation.references[23] Ahmad M., et al. “Cyber security quantification of healthcare medical devices through soft computing technique”, International Journal of Advanced Technology in Engineering and Science, vol. 9, pp. 21–27, 2021.
dc.relation.references[24] Sabu M., et al. “Factors influencing the adoption of ICT tools in Kerala marine fisheries sector: an analytic hierarchy process approach”, Technology Analysis and Strategic Management, vol. 30, pp. 1–15, 2017, https://doi.org/10.1080/09537325.2017.1388363
dc.relation.references[25] Javanbakht T., and Chakravorty S. “Prediction of human behavior with TOPSIS”, Journal of Fuzzy Extension and Applications, vol. 3, pp. 109–125, 2022.
dc.relation.references[26] Javanbakht T. “Être et Pensée”,. Beaudin J. P & Robert S. (Eds.), BouquinBec, Montreal, 2020.
dc.relation.references[27] Javanbakht T. “Analysis of nanoparticles characteristics with TOPSIS for their manufacture optimization”, J. Eng. Sci., vol. 9, pp. C1–C8, 2022.
dc.relation.references[28] Shukla A., et al. “Applications of TOPSIS algorithm on various manufacturing processes: A review”, Materials Today: Proceedings, vol. 4, pp. 5320–5329, 2017, https://doi.org/10.1016/j.matpr.2017.05.042
dc.relation.references[29] Raja S., and Rajan A. J. “A decision-making model for selection of the suitable FDM machine using fuzzy TOPSIS”, Mathematical Problems in Engineering, 7653292, 2022, https://doi.org/10.1155/2022/7653292
dc.relation.references[30] Samala T., et al. “A systematic simulation-based multi-criteria decision-making approach for the evaluation of semi–fully flexible machine system process parameters”, Electronics, vol. 11, 233, 2022, https://doi.org/10.3390/electronics11020233
dc.relation.references[31] Mabkhot M. M., et al. “An ontology-based multi-criteria decision support system to reconfigure manufacturing systems”, IISE Transactions, vol. 52, 2020, https://doi.org/10.1080/24725854.2019.1597317
dc.relation.references[32] Alkhawlani M. M., et al. “Multi-criteria vertical handover by TOPSIS and fuzzy logic”, International Conference on Communications and Information Technology, pp. 96–102, 2011, https://doi.org/10.1109/ICCITECHNOL.2011.5762703
dc.relation.references[33] Biderci H., and Canbaz B. “Ergonomic room selection with intuitive fuzzy TOPSIS method”, Procedia Computer Science, vol. 158, pp. 58–67, 2019, https://doi.org/10.1016/j.procs.2019.09.153
dc.relation.references[34] Haddad A. N., et al. “Application of fuzzy TOPSIS method in supporting supplier selection with focus on HSE criteria: A case study in the oil and gas industry”, Infrastructures, vol. 6, 105, 2021, https://doi.org/10.3390/infrastructures6080105
dc.relation.references[35] Jumarni R. F., and Zamri N. “An integration of fuzzy TOPSIS and fuzzy logic for multi-criteria decision making problems”, International Journal of Engineering and Technology, vol. 7, pp. 102–106, 2018, https://doi.org/10.14419/ijet.v7i2.15.11362
dc.relation.references[36] Yousif M. K., and Shaout M. “Fuzzy logic computational model for performance evaluation of Sudanese universities and academic staff”, Journal of King Saud University – Computer and Information Sciences, vol. 30, pp. 80–119, 2018, https://doi.org/10.1016/j.jksuci.2016.08.002
dc.relation.references[37] Oh K. W., and Bandler W. “Properties of fuzzy implication operators”, International Journal of Approximate Reasoning, 1:273-28, 1987, https://doi.org/10.1016/S0888-613X(87)80002-6
dc.relation.references[38] Javanbakht T., and Sokolowski W. “Thiol-ene/acrylate systems for biomedical shape-memory polymers”, Shape Memory Polymers for Biomedical Applications, pp. 157–166, 2015, https://doi.org/10.1016/B978-0-85709-698-2.00008-8
dc.relation.references[39] Javanbakht T. “Investigation of rheological properties of graphene oxide and its nanocomposite with polyvinyl alcohol”, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 7, pp. 23–32, 2021, https://doi.org/10.23939/ujmems2021.01-02.023
dc.relation.references[40] Emami M. R. “Systematic methodology of fuzzy-logic modeling and control and application to robotics”, Thesis, University of Toronto, 1997.
dc.relation.references[41] Hu X., Chen Z., and Sun Y. “Fuzzy logic based logical query answering on knowledge graphs”, AAAI Technical Track on Data Mining and Knowledge Management, vol. 36, 2022, https://doi.org/10.1609/aaai.v36i4.20310
dc.relation.references[42] Smets P., and Magre P. “Implication in fuzzy logic”, International Journal of Approximate Reasoning, vol. 1, pp. 327–347, 1987, https://doi.org/10.1016/0888-613X(87)90023-5
dc.relation.references[43] Ying M. “Implication operators in fuzzy logic”, IEEE Transactions on Fuzzy Systems, vol. 10, pp. 88–91, 2002, https://doi.org/10.1109/91.983282
dc.relation.referencesen[1] Guo X. et al. "Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy", RSC Adv., vol. 8, pp. 4214–4220, 2018, https://doi.org/10.1039/P.7RA09894D
dc.relation.referencesen[2] Hernández-Rangel F. J. et al. "Continuous improvement process in the development of alow-cost rotational rheometer", Processes, vol. 8, 935, 2020, https://doi.org/10.3390/pr8080935
dc.relation.referencesen[3] Feng T. et al. "Reduction-responsive carbon dots for real-time ratiometric monitoring of anticancer prodrug activation in living cells", ACS Biomat. Sci. Eng., vol. 3, pp. 1535–1541, 2017, https://doi.org/10.1021/acsbiomaterials.7b00264
dc.relation.referencesen[4] Ghanbari A. et al. "Experimental methods in chemical engineering: Rheometry", The Canadian Journal of Chemical Engineering, vol. 98, 2020, https://doi.org/10.1002/cjce.23749
dc.relation.referencesen[5] Kim Y. et al. "Investigation of rheological properties of blended cement pastes using rotational viscometer and dynamic shear rheometer", Advances in Materials Science and Engineering, vol. 2018, pp. 1–6, 2018, https://doi.org/10.1155/2018/6303681
dc.relation.referencesen[6] Kamnev A. A. et al. "Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample peparation effects", Molecules, vol. 26, 1146, 2021, https://doi.org/10.3390/molecules26041146
dc.relation.referencesen[7] Javanbakht T. et al. "Correlation between physicochemical properties of superparamagnetic iron oxide nanoparticles and their reactivity with hydrogen peroxide", Canadian Journal of Chemistry, vol. 98, pp. 601–608, 2020, https://doi.org/10.1139/cjc-2020-0087
dc.relation.referencesen[8] Javanbakht T. et al. "Comparative study of antibiofilm activity and physicochemical properties of microelectrode arrays", Microelectronic Engineering, vol. 229, 111305, 2020, https://doi.org/10.1016/j.mee.2020.111305
dc.relation.referencesen[9] Chilufya L. "Hydrothermal synthesis and characterization of tungsten oxide containing organic-inorganic hybrid material", Thesis, Izmir Institute of Technology, 2019.
dc.relation.referencesen[10] Mudunkotuwa I. A. et al. "ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media", Analyst, vol. 139, pp. 870–881, 2014, https://doi.org/10.1039/P.3AN01684F
dc.relation.referencesen[11] Keša P. et al. "Photoacoustic properties of polypyrrole nanoparticles", Nanomaterials, vol. 11, 9, 2457, 2021, https://doi.org/10.3390/nano11092457
dc.relation.referencesen[12] Guo Y. et al. "FTIR microspectroscopy of particular liptinite- (lopinite-) rich, Late Permian coals from Southern China", International Journal of Coal Geology, vol. 29, pp. 187–197, 1996, https://doi.org/10.1016/0166-5162(95)00024-0
dc.relation.referencesen[13] Javanbakht T. and David E. "Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol", Journal of Thermoplastic Composite Materials, vol. 35, pp. 651–664, 2020, https://doi.org/10.1177/0892705720912767
dc.relation.referencesen[14] McKenna G. B. "Deformation and flow of matter : Interrogating the physics of materials using rheological methods", J. Rheol., vol. 56, pp. 113–158, 2012, https://doi.org/10.1122/1.3671401
dc.relation.referencesen[15] Bae J.-E. et al. "Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear", Rheologica Acta, vol. 52, pp. 841–857, 2013, https://doi.org/10.1007/s00397-013-0720-8
dc.relation.referencesen[16] Stickel J. J. et al. "Connecting large amplitude oscillatory shear rheology to steady simple shear rheology and application to biomass slurries", Applied Rheology, vol. 24, pp. 1–10, 2014.
dc.relation.referencesen[17] Tewari P. C. et al. "Ranking of sintered material for high loaded automobile application by applying entropy-TOPSIS method", Materials Today: Proceedings, vol. 2, pp. 2375–2370, 2015, https://doi.org/10.1016/j.matpr.2015.07.306
dc.relation.referencesen[18] Bakhoum E. S. et al. "A hybrid approach using AHP–TOPSIS–entropy methods for sustainable ranking of structural materials", International Journal of Sustainable Engineering, vol. 6, pp. 212–224, 2013, https://doi.org/10.1080/19397038.2012.719553
dc.relation.referencesen[19] Jahan A. et al. "A target-based normalization technique for materials selection", Materials and Design, vol. 35, pp. 647–654, 2012, https://doi.org/10.1016/j.matdes.2011.09.005
dc.relation.referencesen[20] Mathiyazhagan K., Gnanavelbabu A., and Prabhuraj B. L. "A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches", Journal of Advances in Management Research, Emerald Group Publishing, vol. 16, pp. 234–259, 2019, https://doi.org/10.1108/JAMR-09-2018-0085
dc.relation.referencesen[21] Swapna D., Rao C. S., Kumar S., and Radhika S. "AHP and TOPSIS based selection of aluminium alloy for automobile panels", Journal of Mechanical and Energy Engineering, vol. 3, pp. 43–50, 2019, https://doi.org/10.30464/jmee.2019.3.1.43
dc.relation.referencesen[22] Calizaya A., et al. "Multi-criteria decision analysis (MCDA) for integrated water resources management (IWRM) in the lake Poopo basin, Bolivia", Water Resour Manage, vol. 24, pp. 2267–2289, 2010, https://doi.org/10.1007/s11269-009-9551-x
dc.relation.referencesen[23] Ahmad M., et al. "Cyber security quantification of healthcare medical devices through soft computing technique", International Journal of Advanced Technology in Engineering and Science, vol. 9, pp. 21–27, 2021.
dc.relation.referencesen[24] Sabu M., et al. "Factors influencing the adoption of ICT tools in Kerala marine fisheries sector: an analytic hierarchy process approach", Technology Analysis and Strategic Management, vol. 30, pp. 1–15, 2017, https://doi.org/10.1080/09537325.2017.1388363
dc.relation.referencesen[25] Javanbakht T., and Chakravorty S. "Prediction of human behavior with TOPSIS", Journal of Fuzzy Extension and Applications, vol. 3, pp. 109–125, 2022.
dc.relation.referencesen[26] Javanbakht T. "Être et Pensée",. Beaudin J. P & Robert S. (Eds.), BouquinBec, Montreal, 2020.
dc.relation.referencesen[27] Javanbakht T. "Analysis of nanoparticles characteristics with TOPSIS for their manufacture optimization", J. Eng. Sci., vol. 9, pp. P.1–P.8, 2022.
dc.relation.referencesen[28] Shukla A., et al. "Applications of TOPSIS algorithm on various manufacturing processes: A review", Materials Today: Proceedings, vol. 4, pp. 5320–5329, 2017, https://doi.org/10.1016/j.matpr.2017.05.042
dc.relation.referencesen[29] Raja S., and Rajan A. J. "A decision-making model for selection of the suitable FDM machine using fuzzy TOPSIS", Mathematical Problems in Engineering, 7653292, 2022, https://doi.org/10.1155/2022/7653292
dc.relation.referencesen[30] Samala T., et al. "A systematic simulation-based multi-criteria decision-making approach for the evaluation of semi–fully flexible machine system process parameters", Electronics, vol. 11, 233, 2022, https://doi.org/10.3390/electronics11020233
dc.relation.referencesen[31] Mabkhot M. M., et al. "An ontology-based multi-criteria decision support system to reconfigure manufacturing systems", IISE Transactions, vol. 52, 2020, https://doi.org/10.1080/24725854.2019.1597317
dc.relation.referencesen[32] Alkhawlani M. M., et al. "Multi-criteria vertical handover by TOPSIS and fuzzy logic", International Conference on Communications and Information Technology, pp. 96–102, 2011, https://doi.org/10.1109/ICCITECHNOL.2011.5762703
dc.relation.referencesen[33] Biderci H., and Canbaz B. "Ergonomic room selection with intuitive fuzzy TOPSIS method", Procedia Computer Science, vol. 158, pp. 58–67, 2019, https://doi.org/10.1016/j.procs.2019.09.153
dc.relation.referencesen[34] Haddad A. N., et al. "Application of fuzzy TOPSIS method in supporting supplier selection with focus on HSE criteria: A case study in the oil and gas industry", Infrastructures, vol. 6, 105, 2021, https://doi.org/10.3390/infrastructures6080105
dc.relation.referencesen[35] Jumarni R. F., and Zamri N. "An integration of fuzzy TOPSIS and fuzzy logic for multi-criteria decision making problems", International Journal of Engineering and Technology, vol. 7, pp. 102–106, 2018, https://doi.org/10.14419/ijet.v7i2.15.11362
dc.relation.referencesen[36] Yousif M. K., and Shaout M. "Fuzzy logic computational model for performance evaluation of Sudanese universities and academic staff", Journal of King Saud University – Computer and Information Sciences, vol. 30, pp. 80–119, 2018, https://doi.org/10.1016/j.jksuci.2016.08.002
dc.relation.referencesen[37] Oh K. W., and Bandler W. "Properties of fuzzy implication operators", International Journal of Approximate Reasoning, 1:273-28, 1987, https://doi.org/10.1016/S0888-613X(87)80002-6
dc.relation.referencesen[38] Javanbakht T., and Sokolowski W. "Thiol-ene/acrylate systems for biomedical shape-memory polymers", Shape Memory Polymers for Biomedical Applications, pp. 157–166, 2015, https://doi.org/10.1016/B978-0-85709-698-2.00008-8
dc.relation.referencesen[39] Javanbakht T. "Investigation of rheological properties of graphene oxide and its nanocomposite with polyvinyl alcohol", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 7, pp. 23–32, 2021, https://doi.org/10.23939/ujmems2021.01-02.023
dc.relation.referencesen[40] Emami M. R. "Systematic methodology of fuzzy-logic modeling and control and application to robotics", Thesis, University of Toronto, 1997.
dc.relation.referencesen[41] Hu X., Chen Z., and Sun Y. "Fuzzy logic based logical query answering on knowledge graphs", AAAI Technical Track on Data Mining and Knowledge Management, vol. 36, 2022, https://doi.org/10.1609/aaai.v36i4.20310
dc.relation.referencesen[42] Smets P., and Magre P. "Implication in fuzzy logic", International Journal of Approximate Reasoning, vol. 1, pp. 327–347, 1987, https://doi.org/10.1016/0888-613X(87)90023-5
dc.relation.referencesen[43] Ying M. "Implication operators in fuzzy logic", IEEE Transactions on Fuzzy Systems, vol. 10, pp. 88–91, 2002, https://doi.org/10.1109/91.983282
dc.relation.urihttps://doi.org/10.1039/C7RA09894D
dc.relation.urihttps://doi.org/10.3390/pr8080935
dc.relation.urihttps://doi.org/10.1021/acsbiomaterials.7b00264
dc.relation.urihttps://doi.org/10.1002/cjce.23749
dc.relation.urihttps://doi.org/10.1155/2018/6303681
dc.relation.urihttps://doi.org/10.3390/molecules26041146
dc.relation.urihttps://doi.org/10.1139/cjc-2020-0087
dc.relation.urihttps://doi.org/10.1016/j.mee.2020.111305
dc.relation.urihttps://doi.org/10.1039/C3AN01684F
dc.relation.urihttps://doi.org/10.3390/nano11092457
dc.relation.urihttps://doi.org/10.1016/0166-5162(95)00024-0
dc.relation.urihttps://doi.org/10.1177/0892705720912767
dc.relation.urihttps://doi.org/10.1122/1.3671401
dc.relation.urihttps://doi.org/10.1007/s00397-013-0720-8
dc.relation.urihttps://doi.org/10.1016/j.matpr.2015.07.306
dc.relation.urihttps://doi.org/10.1080/19397038.2012.719553
dc.relation.urihttps://doi.org/10.1016/j.matdes.2011.09.005
dc.relation.urihttps://doi.org/10.1108/JAMR-09-2018-0085
dc.relation.urihttps://doi.org/10.30464/jmee.2019.3.1.43
dc.relation.urihttps://doi.org/10.1007/s11269-009-9551-x
dc.relation.urihttps://doi.org/10.1080/09537325.2017.1388363
dc.relation.urihttps://doi.org/10.1016/j.matpr.2017.05.042
dc.relation.urihttps://doi.org/10.1155/2022/7653292
dc.relation.urihttps://doi.org/10.3390/electronics11020233
dc.relation.urihttps://doi.org/10.1080/24725854.2019.1597317
dc.relation.urihttps://doi.org/10.1109/ICCITECHNOL.2011.5762703
dc.relation.urihttps://doi.org/10.1016/j.procs.2019.09.153
dc.relation.urihttps://doi.org/10.3390/infrastructures6080105
dc.relation.urihttps://doi.org/10.14419/ijet.v7i2.15.11362
dc.relation.urihttps://doi.org/10.1016/j.jksuci.2016.08.002
dc.relation.urihttps://doi.org/10.1016/S0888-613X(87)80002-6
dc.relation.urihttps://doi.org/10.1016/B978-0-85709-698-2.00008-8
dc.relation.urihttps://doi.org/10.23939/ujmems2021.01-02.023
dc.relation.urihttps://doi.org/10.1609/aaai.v36i4.20310
dc.relation.urihttps://doi.org/10.1016/0888-613X(87)90023-5
dc.relation.urihttps://doi.org/10.1109/91.983282
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Javanbakht T., 2022
dc.subjectFTIR spectrometer
dc.subjectrheometer
dc.subjectmechanical engineering
dc.subjectmaterials science
dc.subjectTOPSIS
dc.subjectautomated decision-making
dc.titleOptimization of physical instruments’ characteristics with topsis
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v8n3_Javanbakht_T-Optimization_of_physical_1-9.pdf
Size:
156.51 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v8n3_Javanbakht_T-Optimization_of_physical_1-9__COVER.png
Size:
1.2 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: