Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes
dc.citation.epage | 81 | |
dc.citation.issue | 2 | |
dc.citation.spage | 76 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Була, С. С. | |
dc.contributor.author | Холод, М. І. | |
dc.contributor.author | Вітер, Н. В. | |
dc.contributor.author | Bula, Serhiy | |
dc.contributor.author | Kholod, Mariana | |
dc.contributor.author | Viter, Nazarii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-10T08:44:32Z | |
dc.date.available | 2023-04-10T08:44:32Z | |
dc.date.created | 2021-11-11 | |
dc.date.issued | 2021-11-11 | |
dc.description.abstract | Наведено чисельний аналіз експериментальних результатів, що отримані в результаті випробувань стиснутих цегляних конструкцій виконаних із пустотілої керамічної цегли, що піддавалися центральному стиску до рівня 80 % від руйнівного, розвантажувалися та підсилювалися за допомогою сіток із скловолокна. На цей момент у Європі (як і в Україні) немає єдиного нормативного документа, що регламентує використання композитних матеріалів під час підсилення конструкцій. Основні рекомендації щодо застосування FRP армування у залізобетонних конструкціях наведено у національних нормах Японії, Канади, США. Основні положення цих рекомендацій також висвітлено у звітах Міжнародної федерації зі залізобетону (FIB) щодо використання FRP-армування. На цей момент багато науковців проводять дослідження підсилених композитними матеріалами цегляних колон за різних рівнів навантаження, типу цегляної кладки, типу матеріалу підсилення. Отримані експериментальні результати верифікуються з теоретичними положеннями, що викладені у національних нормах окремих країн. Проведено аналіз експериментальних результатів на основі італійських національних норм та на основі методик розрахунку, що їх запропонували деякі італійські науковці. У результаті проаналізовано збіжність експериментальних результатів з теоретичними засадами розрахунку (за чотирма методиками). Отримані збіжності експериментальних та теоретичних даних показали, що досліджувані поєднання рівня навантажень та типу кладки не повністю враховані у розрахункових підходах та потребують уточнення. Завданням таких досліджень є створення уточнених розрахункових моделей та пропозицій до розрахунку таких конструкцій. | |
dc.description.abstract | This article presents the analysis of obtained experimental results for the study of masonry columns which have been strengthened by GFRP confinement after high-level axial compression loading. Ceramic hollow-brick middle-scale models were investigated regarding assumed testing program. The basics of experimental studies were briefly described in the paper. Theoretical study was performed to compare experimental and theoretical values. Such numerical analysis helps to evaluate the possibility to use the existing standard`s approaches for calculating bearing capacity of strengthened by GFRP jacketing ceramic brick columns which were subjected to the high axial loading. Theoretical results areratheraligned with experimental data. Some conclusions were provided in terms of usability the analytical model provided standards and other scientists. Addressing to the further investigation and research problems were performed. | |
dc.format.extent | 76-81 | |
dc.format.pages | 6 | |
dc.identifier.citation | Bula S. Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes / Serhiy Bula, Mariana Kholod, Nazarii Viter // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 76–81. | |
dc.identifier.citationen | Bula S., Kholod M., Viter N. (2021) Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 76-81. | |
dc.identifier.doi | https://doi.org/10.23939/jtbp2021.02.076 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57933 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (3), 2021 | |
dc.relation.references | JSCE. (1997). Recommendation for design and construction of concrete structures using continuous fiber | |
dc.relation.references | reinforcing materials. Research Committee on Fiber Reinforcing Materials, Japan Society of Civil Engineers, | |
dc.relation.references | Tokyo. URL: https://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23 | |
dc.relation.references | Standard, C. S. A. (2002). Design and construction of building components with fibre-reinforced polymers. | |
dc.relation.references | S806-02, Canadial Standards Association. URL: http://www.ictturkey.com/assets/images/can.csa.s806-02.pdf CNR-DT 200 R1/2013. Guide for the Design and Construction of Externally Bonded FRP Systems for | |
dc.relation.references | Strengthening Existing Structures, National Research Council, Rome, Italy. p. 154. URL: https://www.cnr.it/ | |
dc.relation.references | en/node/2638 | |
dc.relation.references | ACI (2006), ACI 440.1R Guide for the design and construction of concrete reinforced with FRP bars, ACI | |
dc.relation.references | Committee 440, American Concrete Institute (ACI). URL: https://www.concrete.org/store/productdetail.aspx? ItemID=440115 | |
dc.relation.references | Matthys, S., & Fib Working Group. (2019). Externally applied FRP reinforcement for concrete structures | |
dc.relation.references | (Vol. 90). International Federation for Structural Concrete. URL: https://biblio.ugent.be/publication/8657278 | |
dc.relation.references | Yilmaz, I., Mezrea, P. E., Ispir, M., Binbir, E., Bal, I. E., & Ilki, A. (2013, December). External confinement | |
dc.relation.references | of brick masonry columns with open-grid basalt reinforced mortar. In Proceedings of the fourth Asia-Pacific | |
dc.relation.references | conference on FRP in structures (APFIS 2013), Melbourne, Australia (pp. 11–13). URL: https://researchbank. | |
dc.relation.references | swinburne.edu.au/items/5036e8bb-dd27-489a-9321-36801c936868/1/PDF%20%28Published% 20version%29.pdf | |
dc.relation.references | Cascardi, A., Lerna, M., Micelli, F., & Aiello, M. A. (2020). Discontinuous FRP-confinement of masonry | |
dc.relation.references | columns. Frontiers in Built Environment, 5, 147. URL: https://doi.org/10.3389/fbuil.2019.00147 | |
dc.relation.references | Borri, A., Castori, G., &Corradi, M. (2011). Masonry columns confined by steel fiber composite wraps. | |
dc.relation.references | Materials, 4(1), 311–326. URL: https://doi.org/10.3390/ma4010311 | |
dc.relation.references | Valdes, M., Concu, G., & De Nicolo, B. (2015). FRP strengthening of masonry columns: experimental tests | |
dc.relation.references | and theoretical analysis. In Key Engineering Materials (Vol. 624, pp. 603–610). Trans Tech Publications Ltd. URL: | |
dc.relation.references | http://dx.doi.org/10.4028/www.scientific.net/KEM.624.603 | |
dc.relation.references | Witzany, J., & Zigler, R. (2016). Stress state analysis and failure mechanisms of masonry columns reinforced | |
dc.relation.references | with FRP under concentric compressive load. Polymers, 8(5), 176. URL: https://doi.org/10.3390/polym8050176 | |
dc.relation.references | Minafò, G., D'Anna, J., Cucchiara, C., Monaco, A., & La Mendola, L. (2017). Analytical stress-strain law of | |
dc.relation.references | FRP confined masonry in compression: Literature review and design provisions. Composites Part B: Engineering, 115, 160–169. URL: https://doi.org/10.1016/j.compositesb.2016.10.019 | |
dc.relation.references | Micelli, F., De Lorenzis, L., & La Tegola, A. (2004). FRP-confined masonry columns under axial loads: | |
dc.relation.references | experimental results and analytical model. Masonry Int. J, 17, 95–108. URL:https://www.researchgate.net/ | |
dc.relation.references | publication/284674924_FRP-confined_masonry_columns_under_axial_loads_Experimental_results_and_analytical_model | |
dc.relation.references | Rao, K. N., & Pavan, G. S. (2015). FRP-confined clay brick masonry assemblages under axial compression: | |
dc.relation.references | Experimental and analytical investigations. Journal of Composites for Construction, 19(4), 04014068. URL: | |
dc.relation.references | https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525 | |
dc.relation.references | Krevaikas, T. D., & Triantafillou, T. C. (2005). Masonry confinement with fiber-reinforced polymers. Journal of | |
dc.relation.references | Composites for Construction, 9(2), 128–135. URL: http://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128) | |
dc.relation.references | Lignola, G. P., Angiuli, R., Prota, A., & Aiello, M. A. (2014). FRP confinement of masonry: analytical | |
dc.relation.references | modeling. Materials and structures, 47(12), 2101–2115. URL: http://dx.doi.org/10.1617/s11527-014-0323-6 | |
dc.relation.references | Bula, S., &Kholod, M. (2020, September). Experimental Study of Compressed Ceramic Hollow Brick | |
dc.relation.references | Masonry Structures Strengthened with GFRP Meshes. In International Scientific Conference EcoComfort and | |
dc.relation.references | Current Issues of Civil Engineering (pp. 71–78). Springer, Cham. URL: http://dx.doi.org/10.1007/978-3-030-57340-9_9 | |
dc.relation.references | Faella, C., Martinelli, E., Paciello, S., Camorani, G., Aiello, M. A., Micelli, F., & Nigro, E. (2011). Masonry | |
dc.relation.references | columns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 42(4), 692-704. URL: http://dx.doi.org/10.1016/j.compositesb.2011.02.001 | |
dc.relation.references | Corradi, M., Grazini, A., & Borri, A. (2007). Confinement of brick masonry columns with CFRP materials. | |
dc.relation.references | Composites science and technology, 67(9), 1772–1783. URL: http://dx.doi.org/10.1016/j.compscitech.2006.11.002 | |
dc.relation.references | Di Ludovico, M., D’Ambra, C., Prota, A., &Manfredi, G. (2010). FRP confinement of tuff and clay brick | |
dc.relation.references | columns: Experimental study and assessment of analytical models. Journal of Composites for Construction, 14(5), 583–596. URL: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113 | |
dc.relation.referencesen | JSCE. (1997). Recommendation for design and construction of concrete structures using continuous fiber | |
dc.relation.referencesen | reinforcing materials. Research Committee on Fiber Reinforcing Materials, Japan Society of Civil Engineers, | |
dc.relation.referencesen | Tokyo. URL: https://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23 | |
dc.relation.referencesen | Standard, C. S. A. (2002). Design and construction of building components with fibre-reinforced polymers. | |
dc.relation.referencesen | S806-02, Canadial Standards Association. URL: http://www.ictturkey.com/assets/images/can.csa.s806-02.pdf CNR-DT 200 R1/2013. Guide for the Design and Construction of Externally Bonded FRP Systems for | |
dc.relation.referencesen | Strengthening Existing Structures, National Research Council, Rome, Italy. p. 154. URL: https://www.cnr.it/ | |
dc.relation.referencesen | en/node/2638 | |
dc.relation.referencesen | ACI (2006), ACI 440.1R Guide for the design and construction of concrete reinforced with FRP bars, ACI | |
dc.relation.referencesen | Committee 440, American Concrete Institute (ACI). URL: https://www.concrete.org/store/productdetail.aspx? ItemID=440115 | |
dc.relation.referencesen | Matthys, S., & Fib Working Group. (2019). Externally applied FRP reinforcement for concrete structures | |
dc.relation.referencesen | (Vol. 90). International Federation for Structural Concrete. URL: https://biblio.ugent.be/publication/8657278 | |
dc.relation.referencesen | Yilmaz, I., Mezrea, P. E., Ispir, M., Binbir, E., Bal, I. E., & Ilki, A. (2013, December). External confinement | |
dc.relation.referencesen | of brick masonry columns with open-grid basalt reinforced mortar. In Proceedings of the fourth Asia-Pacific | |
dc.relation.referencesen | conference on FRP in structures (APFIS 2013), Melbourne, Australia (pp. 11–13). URL: https://researchbank. | |
dc.relation.referencesen | swinburne.edu.au/items/5036e8bb-dd27-489a-9321-36801c936868/1/PDF%20%28Published% 20version%29.pdf | |
dc.relation.referencesen | Cascardi, A., Lerna, M., Micelli, F., & Aiello, M. A. (2020). Discontinuous FRP-confinement of masonry | |
dc.relation.referencesen | columns. Frontiers in Built Environment, 5, 147. URL: https://doi.org/10.3389/fbuil.2019.00147 | |
dc.relation.referencesen | Borri, A., Castori, G., &Corradi, M. (2011). Masonry columns confined by steel fiber composite wraps. | |
dc.relation.referencesen | Materials, 4(1), 311–326. URL: https://doi.org/10.3390/ma4010311 | |
dc.relation.referencesen | Valdes, M., Concu, G., & De Nicolo, B. (2015). FRP strengthening of masonry columns: experimental tests | |
dc.relation.referencesen | and theoretical analysis. In Key Engineering Materials (Vol. 624, pp. 603–610). Trans Tech Publications Ltd. URL: | |
dc.relation.referencesen | http://dx.doi.org/10.4028/www.scientific.net/KEM.624.603 | |
dc.relation.referencesen | Witzany, J., & Zigler, R. (2016). Stress state analysis and failure mechanisms of masonry columns reinforced | |
dc.relation.referencesen | with FRP under concentric compressive load. Polymers, 8(5), 176. URL: https://doi.org/10.3390/polym8050176 | |
dc.relation.referencesen | Minafò, G., D'Anna, J., Cucchiara, C., Monaco, A., & La Mendola, L. (2017). Analytical stress-strain law of | |
dc.relation.referencesen | FRP confined masonry in compression: Literature review and design provisions. Composites Part B: Engineering, 115, 160–169. URL: https://doi.org/10.1016/j.compositesb.2016.10.019 | |
dc.relation.referencesen | Micelli, F., De Lorenzis, L., & La Tegola, A. (2004). FRP-confined masonry columns under axial loads: | |
dc.relation.referencesen | experimental results and analytical model. Masonry Int. J, 17, 95–108. URL:https://www.researchgate.net/ | |
dc.relation.referencesen | publication/284674924_FRP-confined_masonry_columns_under_axial_loads_Experimental_results_and_analytical_model | |
dc.relation.referencesen | Rao, K. N., & Pavan, G. S. (2015). FRP-confined clay brick masonry assemblages under axial compression: | |
dc.relation.referencesen | Experimental and analytical investigations. Journal of Composites for Construction, 19(4), 04014068. URL: | |
dc.relation.referencesen | https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525 | |
dc.relation.referencesen | Krevaikas, T. D., & Triantafillou, T. C. (2005). Masonry confinement with fiber-reinforced polymers. Journal of | |
dc.relation.referencesen | Composites for Construction, 9(2), 128–135. URL: http://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128) | |
dc.relation.referencesen | Lignola, G. P., Angiuli, R., Prota, A., & Aiello, M. A. (2014). FRP confinement of masonry: analytical | |
dc.relation.referencesen | modeling. Materials and structures, 47(12), 2101–2115. URL: http://dx.doi.org/10.1617/s11527-014-0323-6 | |
dc.relation.referencesen | Bula, S., &Kholod, M. (2020, September). Experimental Study of Compressed Ceramic Hollow Brick | |
dc.relation.referencesen | Masonry Structures Strengthened with GFRP Meshes. In International Scientific Conference EcoComfort and | |
dc.relation.referencesen | Current Issues of Civil Engineering (pp. 71–78). Springer, Cham. URL: http://dx.doi.org/10.1007/978-3-030-57340-9_9 | |
dc.relation.referencesen | Faella, C., Martinelli, E., Paciello, S., Camorani, G., Aiello, M. A., Micelli, F., & Nigro, E. (2011). Masonry | |
dc.relation.referencesen | columns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 42(4), 692-704. URL: http://dx.doi.org/10.1016/j.compositesb.2011.02.001 | |
dc.relation.referencesen | Corradi, M., Grazini, A., & Borri, A. (2007). Confinement of brick masonry columns with CFRP materials. | |
dc.relation.referencesen | Composites science and technology, 67(9), 1772–1783. URL: http://dx.doi.org/10.1016/j.compscitech.2006.11.002 | |
dc.relation.referencesen | Di Ludovico, M., D’Ambra, C., Prota, A., &Manfredi, G. (2010). FRP confinement of tuff and clay brick | |
dc.relation.referencesen | columns: Experimental study and assessment of analytical models. Journal of Composites for Construction, 14(5), 583–596. URL: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113 | |
dc.relation.uri | https://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23 | |
dc.relation.uri | http://www.ictturkey.com/assets/images/can.csa.s806-02.pdf | |
dc.relation.uri | https://www.cnr.it/ | |
dc.relation.uri | https://www.concrete.org/store/productdetail.aspx? | |
dc.relation.uri | https://biblio.ugent.be/publication/8657278 | |
dc.relation.uri | https://researchbank | |
dc.relation.uri | https://doi.org/10.3389/fbuil.2019.00147 | |
dc.relation.uri | https://doi.org/10.3390/ma4010311 | |
dc.relation.uri | http://dx.doi.org/10.4028/www.scientific.net/KEM.624.603 | |
dc.relation.uri | https://doi.org/10.3390/polym8050176 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2016.10.019 | |
dc.relation.uri | https://www.researchgate.net/ | |
dc.relation.uri | https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525 | |
dc.relation.uri | http://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128 | |
dc.relation.uri | http://dx.doi.org/10.1617/s11527-014-0323-6 | |
dc.relation.uri | http://dx.doi.org/10.1007/978-3-030-57340-9_9 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.compositesb.2011.02.001 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.compscitech.2006.11.002 | |
dc.relation.uri | http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Bula S., Kholod M., Viter N., 2021 | |
dc.subject | чисельний аналіз | |
dc.subject | цегляні конструкції | |
dc.subject | сітки із скловолокна | |
dc.subject | композитні матеріали | |
dc.subject | підсилення | |
dc.subject | міцність кладки на стиск | |
dc.subject | masonry | |
dc.subject | confinement | |
dc.subject | GFRP mesh | |
dc.subject | strengthening | |
dc.subject | effective confining pressure | |
dc.subject | design compressive strength | |
dc.title | Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes | |
dc.title.alternative | Чисельний аналіз стиснутих цегляних конструкцій з пустотілої керамічної цегли, що були посилені сітками із скловолокна | |
dc.type | Article |