Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes

dc.citation.epage81
dc.citation.issue2
dc.citation.spage76
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБула, С. С.
dc.contributor.authorХолод, М. І.
dc.contributor.authorВітер, Н. В.
dc.contributor.authorBula, Serhiy
dc.contributor.authorKholod, Mariana
dc.contributor.authorViter, Nazarii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-10T08:44:32Z
dc.date.available2023-04-10T08:44:32Z
dc.date.created2021-11-11
dc.date.issued2021-11-11
dc.description.abstractНаведено чисельний аналіз експериментальних результатів, що отримані в результаті випробувань стиснутих цегляних конструкцій виконаних із пустотілої керамічної цегли, що піддавалися центральному стиску до рівня 80 % від руйнівного, розвантажувалися та підсилювалися за допомогою сіток із скловолокна. На цей момент у Європі (як і в Україні) немає єдиного нормативного документа, що регламентує використання композитних матеріалів під час підсилення конструкцій. Основні рекомендації щодо застосування FRP армування у залізобетонних конструкціях наведено у національних нормах Японії, Канади, США. Основні положення цих рекомендацій також висвітлено у звітах Міжнародної федерації зі залізобетону (FIB) щодо використання FRP-армування. На цей момент багато науковців проводять дослідження підсилених композитними матеріалами цегляних колон за різних рівнів навантаження, типу цегляної кладки, типу матеріалу підсилення. Отримані експериментальні результати верифікуються з теоретичними положеннями, що викладені у національних нормах окремих країн. Проведено аналіз експериментальних результатів на основі італійських національних норм та на основі методик розрахунку, що їх запропонували деякі італійські науковці. У результаті проаналізовано збіжність експериментальних результатів з теоретичними засадами розрахунку (за чотирма методиками). Отримані збіжності експериментальних та теоретичних даних показали, що досліджувані поєднання рівня навантажень та типу кладки не повністю враховані у розрахункових підходах та потребують уточнення. Завданням таких досліджень є створення уточнених розрахункових моделей та пропозицій до розрахунку таких конструкцій.
dc.description.abstractThis article presents the analysis of obtained experimental results for the study of masonry columns which have been strengthened by GFRP confinement after high-level axial compression loading. Ceramic hollow-brick middle-scale models were investigated regarding assumed testing program. The basics of experimental studies were briefly described in the paper. Theoretical study was performed to compare experimental and theoretical values. Such numerical analysis helps to evaluate the possibility to use the existing standard`s approaches for calculating bearing capacity of strengthened by GFRP jacketing ceramic brick columns which were subjected to the high axial loading. Theoretical results areratheraligned with experimental data. Some conclusions were provided in terms of usability the analytical model provided standards and other scientists. Addressing to the further investigation and research problems were performed.
dc.format.extent76-81
dc.format.pages6
dc.identifier.citationBula S. Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes / Serhiy Bula, Mariana Kholod, Nazarii Viter // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 76–81.
dc.identifier.citationenBula S., Kholod M., Viter N. (2021) Numerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 76-81.
dc.identifier.doihttps://doi.org/10.23939/jtbp2021.02.076
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57933
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (3), 2021
dc.relation.referencesJSCE. (1997). Recommendation for design and construction of concrete structures using continuous fiber
dc.relation.referencesreinforcing materials. Research Committee on Fiber Reinforcing Materials, Japan Society of Civil Engineers,
dc.relation.referencesTokyo. URL: https://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23
dc.relation.referencesStandard, C. S. A. (2002). Design and construction of building components with fibre-reinforced polymers.
dc.relation.referencesS806-02, Canadial Standards Association. URL: http://www.ictturkey.com/assets/images/can.csa.s806-02.pdf CNR-DT 200 R1/2013. Guide for the Design and Construction of Externally Bonded FRP Systems for
dc.relation.referencesStrengthening Existing Structures, National Research Council, Rome, Italy. p. 154. URL: https://www.cnr.it/
dc.relation.referencesen/node/2638
dc.relation.referencesACI (2006), ACI 440.1R Guide for the design and construction of concrete reinforced with FRP bars, ACI
dc.relation.referencesCommittee 440, American Concrete Institute (ACI). URL: https://www.concrete.org/store/productdetail.aspx? ItemID=440115
dc.relation.referencesMatthys, S., & Fib Working Group. (2019). Externally applied FRP reinforcement for concrete structures
dc.relation.references(Vol. 90). International Federation for Structural Concrete. URL: https://biblio.ugent.be/publication/8657278
dc.relation.referencesYilmaz, I., Mezrea, P. E., Ispir, M., Binbir, E., Bal, I. E., & Ilki, A. (2013, December). External confinement
dc.relation.referencesof brick masonry columns with open-grid basalt reinforced mortar. In Proceedings of the fourth Asia-Pacific
dc.relation.referencesconference on FRP in structures (APFIS 2013), Melbourne, Australia (pp. 11–13). URL: https://researchbank.
dc.relation.referencesswinburne.edu.au/items/5036e8bb-dd27-489a-9321-36801c936868/1/PDF%20%28Published% 20version%29.pdf
dc.relation.referencesCascardi, A., Lerna, M., Micelli, F., & Aiello, M. A. (2020). Discontinuous FRP-confinement of masonry
dc.relation.referencescolumns. Frontiers in Built Environment, 5, 147. URL: https://doi.org/10.3389/fbuil.2019.00147
dc.relation.referencesBorri, A., Castori, G., &Corradi, M. (2011). Masonry columns confined by steel fiber composite wraps.
dc.relation.referencesMaterials, 4(1), 311–326. URL: https://doi.org/10.3390/ma4010311
dc.relation.referencesValdes, M., Concu, G., & De Nicolo, B. (2015). FRP strengthening of masonry columns: experimental tests
dc.relation.referencesand theoretical analysis. In Key Engineering Materials (Vol. 624, pp. 603–610). Trans Tech Publications Ltd. URL:
dc.relation.referenceshttp://dx.doi.org/10.4028/www.scientific.net/KEM.624.603
dc.relation.referencesWitzany, J., & Zigler, R. (2016). Stress state analysis and failure mechanisms of masonry columns reinforced
dc.relation.referenceswith FRP under concentric compressive load. Polymers, 8(5), 176. URL: https://doi.org/10.3390/polym8050176
dc.relation.referencesMinafò, G., D'Anna, J., Cucchiara, C., Monaco, A., & La Mendola, L. (2017). Analytical stress-strain law of
dc.relation.referencesFRP confined masonry in compression: Literature review and design provisions. Composites Part B: Engineering, 115, 160–169. URL: https://doi.org/10.1016/j.compositesb.2016.10.019
dc.relation.referencesMicelli, F., De Lorenzis, L., & La Tegola, A. (2004). FRP-confined masonry columns under axial loads:
dc.relation.referencesexperimental results and analytical model. Masonry Int. J, 17, 95–108. URL:https://www.researchgate.net/
dc.relation.referencespublication/284674924_FRP-confined_masonry_columns_under_axial_loads_Experimental_results_and_analytical_model
dc.relation.referencesRao, K. N., & Pavan, G. S. (2015). FRP-confined clay brick masonry assemblages under axial compression:
dc.relation.referencesExperimental and analytical investigations. Journal of Composites for Construction, 19(4), 04014068. URL:
dc.relation.referenceshttps://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525
dc.relation.referencesKrevaikas, T. D., & Triantafillou, T. C. (2005). Masonry confinement with fiber-reinforced polymers. Journal of
dc.relation.referencesComposites for Construction, 9(2), 128–135. URL: http://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128)
dc.relation.referencesLignola, G. P., Angiuli, R., Prota, A., & Aiello, M. A. (2014). FRP confinement of masonry: analytical
dc.relation.referencesmodeling. Materials and structures, 47(12), 2101–2115. URL: http://dx.doi.org/10.1617/s11527-014-0323-6
dc.relation.referencesBula, S., &Kholod, M. (2020, September). Experimental Study of Compressed Ceramic Hollow Brick
dc.relation.referencesMasonry Structures Strengthened with GFRP Meshes. In International Scientific Conference EcoComfort and
dc.relation.referencesCurrent Issues of Civil Engineering (pp. 71–78). Springer, Cham. URL: http://dx.doi.org/10.1007/978-3-030-57340-9_9
dc.relation.referencesFaella, C., Martinelli, E., Paciello, S., Camorani, G., Aiello, M. A., Micelli, F., & Nigro, E. (2011). Masonry
dc.relation.referencescolumns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 42(4), 692-704. URL: http://dx.doi.org/10.1016/j.compositesb.2011.02.001
dc.relation.referencesCorradi, M., Grazini, A., & Borri, A. (2007). Confinement of brick masonry columns with CFRP materials.
dc.relation.referencesComposites science and technology, 67(9), 1772–1783. URL: http://dx.doi.org/10.1016/j.compscitech.2006.11.002
dc.relation.referencesDi Ludovico, M., D’Ambra, C., Prota, A., &Manfredi, G. (2010). FRP confinement of tuff and clay brick
dc.relation.referencescolumns: Experimental study and assessment of analytical models. Journal of Composites for Construction, 14(5), 583–596. URL: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113
dc.relation.referencesenJSCE. (1997). Recommendation for design and construction of concrete structures using continuous fiber
dc.relation.referencesenreinforcing materials. Research Committee on Fiber Reinforcing Materials, Japan Society of Civil Engineers,
dc.relation.referencesenTokyo. URL: https://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23
dc.relation.referencesenStandard, C. S. A. (2002). Design and construction of building components with fibre-reinforced polymers.
dc.relation.referencesenS806-02, Canadial Standards Association. URL: http://www.ictturkey.com/assets/images/can.csa.s806-02.pdf CNR-DT 200 R1/2013. Guide for the Design and Construction of Externally Bonded FRP Systems for
dc.relation.referencesenStrengthening Existing Structures, National Research Council, Rome, Italy. p. 154. URL: https://www.cnr.it/
dc.relation.referencesenen/node/2638
dc.relation.referencesenACI (2006), ACI 440.1R Guide for the design and construction of concrete reinforced with FRP bars, ACI
dc.relation.referencesenCommittee 440, American Concrete Institute (ACI). URL: https://www.concrete.org/store/productdetail.aspx? ItemID=440115
dc.relation.referencesenMatthys, S., & Fib Working Group. (2019). Externally applied FRP reinforcement for concrete structures
dc.relation.referencesen(Vol. 90). International Federation for Structural Concrete. URL: https://biblio.ugent.be/publication/8657278
dc.relation.referencesenYilmaz, I., Mezrea, P. E., Ispir, M., Binbir, E., Bal, I. E., & Ilki, A. (2013, December). External confinement
dc.relation.referencesenof brick masonry columns with open-grid basalt reinforced mortar. In Proceedings of the fourth Asia-Pacific
dc.relation.referencesenconference on FRP in structures (APFIS 2013), Melbourne, Australia (pp. 11–13). URL: https://researchbank.
dc.relation.referencesenswinburne.edu.au/items/5036e8bb-dd27-489a-9321-36801c936868/1/PDF%20%28Published% 20version%29.pdf
dc.relation.referencesenCascardi, A., Lerna, M., Micelli, F., & Aiello, M. A. (2020). Discontinuous FRP-confinement of masonry
dc.relation.referencesencolumns. Frontiers in Built Environment, 5, 147. URL: https://doi.org/10.3389/fbuil.2019.00147
dc.relation.referencesenBorri, A., Castori, G., &Corradi, M. (2011). Masonry columns confined by steel fiber composite wraps.
dc.relation.referencesenMaterials, 4(1), 311–326. URL: https://doi.org/10.3390/ma4010311
dc.relation.referencesenValdes, M., Concu, G., & De Nicolo, B. (2015). FRP strengthening of masonry columns: experimental tests
dc.relation.referencesenand theoretical analysis. In Key Engineering Materials (Vol. 624, pp. 603–610). Trans Tech Publications Ltd. URL:
dc.relation.referencesenhttp://dx.doi.org/10.4028/www.scientific.net/KEM.624.603
dc.relation.referencesenWitzany, J., & Zigler, R. (2016). Stress state analysis and failure mechanisms of masonry columns reinforced
dc.relation.referencesenwith FRP under concentric compressive load. Polymers, 8(5), 176. URL: https://doi.org/10.3390/polym8050176
dc.relation.referencesenMinafò, G., D'Anna, J., Cucchiara, C., Monaco, A., & La Mendola, L. (2017). Analytical stress-strain law of
dc.relation.referencesenFRP confined masonry in compression: Literature review and design provisions. Composites Part B: Engineering, 115, 160–169. URL: https://doi.org/10.1016/j.compositesb.2016.10.019
dc.relation.referencesenMicelli, F., De Lorenzis, L., & La Tegola, A. (2004). FRP-confined masonry columns under axial loads:
dc.relation.referencesenexperimental results and analytical model. Masonry Int. J, 17, 95–108. URL:https://www.researchgate.net/
dc.relation.referencesenpublication/284674924_FRP-confined_masonry_columns_under_axial_loads_Experimental_results_and_analytical_model
dc.relation.referencesenRao, K. N., & Pavan, G. S. (2015). FRP-confined clay brick masonry assemblages under axial compression:
dc.relation.referencesenExperimental and analytical investigations. Journal of Composites for Construction, 19(4), 04014068. URL:
dc.relation.referencesenhttps://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525
dc.relation.referencesenKrevaikas, T. D., & Triantafillou, T. C. (2005). Masonry confinement with fiber-reinforced polymers. Journal of
dc.relation.referencesenComposites for Construction, 9(2), 128–135. URL: http://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128)
dc.relation.referencesenLignola, G. P., Angiuli, R., Prota, A., & Aiello, M. A. (2014). FRP confinement of masonry: analytical
dc.relation.referencesenmodeling. Materials and structures, 47(12), 2101–2115. URL: http://dx.doi.org/10.1617/s11527-014-0323-6
dc.relation.referencesenBula, S., &Kholod, M. (2020, September). Experimental Study of Compressed Ceramic Hollow Brick
dc.relation.referencesenMasonry Structures Strengthened with GFRP Meshes. In International Scientific Conference EcoComfort and
dc.relation.referencesenCurrent Issues of Civil Engineering (pp. 71–78). Springer, Cham. URL: http://dx.doi.org/10.1007/978-3-030-57340-9_9
dc.relation.referencesenFaella, C., Martinelli, E., Paciello, S., Camorani, G., Aiello, M. A., Micelli, F., & Nigro, E. (2011). Masonry
dc.relation.referencesencolumns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 42(4), 692-704. URL: http://dx.doi.org/10.1016/j.compositesb.2011.02.001
dc.relation.referencesenCorradi, M., Grazini, A., & Borri, A. (2007). Confinement of brick masonry columns with CFRP materials.
dc.relation.referencesenComposites science and technology, 67(9), 1772–1783. URL: http://dx.doi.org/10.1016/j.compscitech.2006.11.002
dc.relation.referencesenDi Ludovico, M., D’Ambra, C., Prota, A., &Manfredi, G. (2010). FRP confinement of tuff and clay brick
dc.relation.referencesencolumns: Experimental study and assessment of analytical models. Journal of Composites for Construction, 14(5), 583–596. URL: http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113
dc.relation.urihttps://www.e-periodica.ch/cntmng?pid=bse-re-003:1999:81::23
dc.relation.urihttp://www.ictturkey.com/assets/images/can.csa.s806-02.pdf
dc.relation.urihttps://www.cnr.it/
dc.relation.urihttps://www.concrete.org/store/productdetail.aspx?
dc.relation.urihttps://biblio.ugent.be/publication/8657278
dc.relation.urihttps://researchbank
dc.relation.urihttps://doi.org/10.3389/fbuil.2019.00147
dc.relation.urihttps://doi.org/10.3390/ma4010311
dc.relation.urihttp://dx.doi.org/10.4028/www.scientific.net/KEM.624.603
dc.relation.urihttps://doi.org/10.3390/polym8050176
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2016.10.019
dc.relation.urihttps://www.researchgate.net/
dc.relation.urihttps://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000525
dc.relation.urihttp://dx.doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128
dc.relation.urihttp://dx.doi.org/10.1617/s11527-014-0323-6
dc.relation.urihttp://dx.doi.org/10.1007/978-3-030-57340-9_9
dc.relation.urihttp://dx.doi.org/10.1016/j.compositesb.2011.02.001
dc.relation.urihttp://dx.doi.org/10.1016/j.compscitech.2006.11.002
dc.relation.urihttp://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000113
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Bula S., Kholod M., Viter N., 2021
dc.subjectчисельний аналіз
dc.subjectцегляні конструкції
dc.subjectсітки із скловолокна
dc.subjectкомпозитні матеріали
dc.subjectпідсилення
dc.subjectміцність кладки на стиск
dc.subjectmasonry
dc.subjectconfinement
dc.subjectGFRP mesh
dc.subjectstrengthening
dc.subjecteffective confining pressure
dc.subjectdesign compressive strength
dc.titleNumerical analysis for compressed ceramic hollow brick masonry columns strengthened with GFRP meshes
dc.title.alternativeЧисельний аналіз стиснутих цегляних конструкцій з пустотілої керамічної цегли, що були посилені сітками із скловолокна
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v3n2_Bula_S-Numerical_analysis_for_compressed_76-81.pdf
Size:
384.37 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: