Methodology for the construction of predictive analysis systems as exemplified by the mining equipment in the big data environment using smart agents and cybernetic systems
dc.citation.epage | 43 | |
dc.citation.issue | 1 | |
dc.citation.spage | 33 | |
dc.contributor.affiliation | Kryvyi Rih National University | |
dc.contributor.author | Kupin, Andrey | |
dc.contributor.author | Ivchenko, Rodion | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2020-02-18T13:14:53Z | |
dc.date.available | 2020-02-18T13:14:53Z | |
dc.date.created | 2018-02-01 | |
dc.date.issued | 2018-02-01 | |
dc.description.abstract | It is necessary to determine the optimal methodology for the system of predictive analysis of equipment to prevent emergency situations. The system may include, in particular: data input/reading from sensors, processing/storage of information in a database using algorithms for processing Big Data and decision trees [1]. Identifying possible types of problems and making decisions on how to respond to them; training the system for more accurate response and decision-making. | |
dc.format.extent | 33-43 | |
dc.format.pages | 11 | |
dc.identifier.citation | Kupin A. Methodology for the construction of predictive analysis systems as exemplified by the mining equipment in the big data environment using smart agents and cybernetic systems / Andrey Kupin, Rodion Ivchenko // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 33–43. | |
dc.identifier.citationen | Kupin A. Methodology for the construction of predictive analysis systems as exemplified by the mining equipment in the big data environment using smart agents and cybernetic systems / Andrey Kupin, Rodion Ivchenko // Advances in Cyber-Physical Systems. — Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 33–43. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45680 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (3), 2018 | |
dc.relation.references | 1. A. Kupin, I. Muzyka, R. Ivchenko: “Information Technologies of Processing Big Industrial Data and Decision-Making Methods”, Problems of Infocommunications. Science andTechnology, 2018. | |
dc.relation.references | 2. “Predictive analytics features: case from Beltel Datanomics” [Electronic resource] – Available: https://iot.ru/promyshlennost/vozmozhnostiprognoznoy-analitiki-keys-ot-beltel-datanomics | |
dc.relation.references | 3. A. M.Mariuta, Yu. G. Kachan, V. A. Bunko: “Automatic Control of Technological Processes of Concentrating Plants”. Moskow «Nedra», 1983. | |
dc.relation.references | 4. “Electrotechnical Encyclopedia. Sensors” [Electronic resource] – Available: http://www.electrolibrary.info/subscribe/sub_16_datchiki.htmR. Ivchenko: “Technology predictive analysis based on IoT TABIGDATA”. ІІІ International Scientific and Practical Conference "Information Security and Computer Technologies". Central Ukrainian National Technical University, Kropivnitsky, April 19-20, 2018. | |
dc.relation.references | 5. Magazine "Habrahabr". “Howto predict the exchange rate of the ruble to the dollar using SAP Predictive Analytics” [Electronic resource] – Available: https://habrahabr.ru/company/sap/blog/345108/ | |
dc.relation.references | 6. “Comparison of metadata editors”. [Electronic resource] Available: https://en.wikipedia.org/wiki/Comparison_of_metadata_editors | |
dc.relation.references | 7. Magazine "Habrahabr". “Big Data from A to Z. Part 1: Principles of working with big data, the MapReduce paradigm”. [Electronic resource] – Available:: https://habrahabr.ru/company/dca/blog/267361/ | |
dc.relation.references | 8. Ivanov P. D., Vampilovv V. Zh. “Big Data technologies and their application in a modern industrial enterprise.” Engineering Journal: Science and Innovation, 2014. [Electronic resource] – Available: http://engjournal.ru/catalog/it/asu/1228.html | |
dc.relation.references | 9. “Using big data in marketing research” [Electronic resource] – Available: http://www.ovtr.ru/stati/bolshie-dannye-big-data-v-marketingovyhissledovaniyah. | |
dc.relation.referencesen | 1. A. Kupin, I. Muzyka, R. Ivchenko: "Information Technologies of Processing Big Industrial Data and Decision-Making Methods", Problems of Infocommunications. Science andTechnology, 2018. | |
dc.relation.referencesen | 2. "Predictive analytics features: case from Beltel Datanomics" [Electronic resource] – Available: https://iot.ru/promyshlennost/vozmozhnostiprognoznoy-analitiki-keys-ot-beltel-datanomics | |
dc.relation.referencesen | 3. A. M.Mariuta, Yu. G. Kachan, V. A. Bunko: "Automatic Control of Technological Processes of Concentrating Plants". Moskow "Nedra", 1983. | |
dc.relation.referencesen | 4. "Electrotechnical Encyclopedia. Sensors" [Electronic resource] – Available: http://www.electrolibrary.info/subscribe/sub_16_datchiki.htmR. Ivchenko: "Technology predictive analysis based on IoT TABIGDATA". III International Scientific and Practical Conference "Information Security and Computer Technologies". Central Ukrainian National Technical University, Kropivnitsky, April 19-20, 2018. | |
dc.relation.referencesen | 5. Magazine "Habrahabr". "Howto predict the exchange rate of the ruble to the dollar using SAP Predictive Analytics" [Electronic resource] – Available: https://habrahabr.ru/company/sap/blog/345108/ | |
dc.relation.referencesen | 6. "Comparison of metadata editors". [Electronic resource] Available: https://en.wikipedia.org/wiki/Comparison_of_metadata_editors | |
dc.relation.referencesen | 7. Magazine "Habrahabr". "Big Data from A to Z. Part 1: Principles of working with big data, the MapReduce paradigm". [Electronic resource] – Available:: https://habrahabr.ru/company/dca/blog/267361/ | |
dc.relation.referencesen | 8. Ivanov P. D., Vampilovv V. Zh. "Big Data technologies and their application in a modern industrial enterprise." Engineering Journal: Science and Innovation, 2014. [Electronic resource] – Available: http://engjournal.ru/catalog/it/asu/1228.html | |
dc.relation.referencesen | 9. "Using big data in marketing research" [Electronic resource] – Available: http://www.ovtr.ru/stati/bolshie-dannye-big-data-v-marketingovyhissledovaniyah. | |
dc.relation.uri | https://iot.ru/promyshlennost/vozmozhnostiprognoznoy-analitiki-keys-ot-beltel-datanomics | |
dc.relation.uri | http://www.electrolibrary.info/subscribe/sub_16_datchiki.htmR | |
dc.relation.uri | https://habrahabr.ru/company/sap/blog/345108/ | |
dc.relation.uri | https://en.wikipedia.org/wiki/Comparison_of_metadata_editors | |
dc.relation.uri | https://habrahabr.ru/company/dca/blog/267361/ | |
dc.relation.uri | http://engjournal.ru/catalog/it/asu/1228.html | |
dc.relation.uri | http://www.ovtr.ru/stati/bolshie-dannye-big-data-v-marketingovyhissledovaniyah | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.rights.holder | © Kupin A., Ivchenko R., 2018 | |
dc.subject | Industry 4.0 | |
dc.subject | Big Data | |
dc.subject | Predictive analytics | |
dc.subject | smart agents | |
dc.subject | cybernetic systems | |
dc.title | Methodology for the construction of predictive analysis systems as exemplified by the mining equipment in the big data environment using smart agents and cybernetic systems | |
dc.type | Article |
Files
License bundle
1 - 1 of 1