Dynamics of motion of electron in electrical field

dc.citation.epage42
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage39
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorTchaban, Vasil
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-01-21T08:54:36Z
dc.date.available2021-01-21T08:54:36Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractNowadays, the function of the law of interaction of moving charged bodies has been taken over entirely by the theory of relativity, being covered by a pseudo slogan about the inability of Galileo transformations. In contrast, the article adapts Coulomb’s law in the case of moving charges in all possible speeds in the usual three-dimensional Euclidean space and physical time. This takes into account the finite speed of propagation of the electric field and the law of conservation of the charge. On this basis, the dynamics of the free motion of an electron in a non-uniform electric field are simulated. For qualitative and quantitative evaluations of the manifestation of the relativistic effect on the dynamics of motion, the duplicate time functions of velocities and coordinates obtained by classical Coulomb’s law are given. Electromechanical analogies of electric and gravitational fields have been made.
dc.format.extent39-42
dc.format.pages4
dc.identifier.citationTchaban V. Dynamics of motion of electron in electrical field / Vasil Tchaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 2. — P. 39–42.
dc.identifier.citationenTchaban V. Dynamics of motion of electron in electrical field / Vasil Tchaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 2. — P. 39–42.
dc.identifier.doidoi.org/10.23939/istcmtm2020.02.039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55961
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (81), 2020
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (81), 2020
dc.relation.references[1] H. Poincare. About science. Moscow, Russia: Science, 1983 (In Russian).
dc.relation.references[2] S. Karavashkin, “On the curvature of space-time”. Proceedings of the Selfie, pp. 1–8, 2017. [Online] Available: http://www.decoder.ru/list/all/topic_312/.
dc.relation.references[3] K. S. Demirchyan. A moving charge in four-dimensional space by Maxwell and Einstein. Moscow, Russia: Comtech-Print, 2008.
dc.relation.references[4] G. Ivchenkov. “Force interaction of moving charges between themselves and with the fields. “Relativistic” law of Coulomb”. http://new-idea.kulichki.net/pubfiles/151026192403.pdf
dc.relation.references[5] V. Tchaban. Non-standard problems of electricity, mechanics, philosophy. Lviv, Ukraine: Space M, 2019.
dc.relation.references[6] A. Logunov, M. A. Mestriashvili, and VA Petrov. How were the Hilbert-Einstein equations discovered?: IFVE Preprint 2004-7. Protvino, Russia: 2004.
dc.relation.references[7] R. F. Feynman., R. B. Leighton, M. Sands. The Feinman lectures on Physics. Massachusetts, Palo Alto, London, USA: Addison-Wesley publ. comp., inc. reading, 1964.
dc.relation.referencesen[1] H. Poincare. About science. Moscow, Russia: Science, 1983 (In Russian).
dc.relation.referencesen[2] S. Karavashkin, "On the curvature of space-time". Proceedings of the Selfie, pp. 1–8, 2017. [Online] Available: http://www.decoder.ru/list/all/topic_312/.
dc.relation.referencesen[3] K. S. Demirchyan. A moving charge in four-dimensional space by Maxwell and Einstein. Moscow, Russia: Comtech-Print, 2008.
dc.relation.referencesen[4] G. Ivchenkov. "Force interaction of moving charges between themselves and with the fields. "Relativistic" law of Coulomb". http://new-idea.kulichki.net/pubfiles/151026192403.pdf
dc.relation.referencesen[5] V. Tchaban. Non-standard problems of electricity, mechanics, philosophy. Lviv, Ukraine: Space M, 2019.
dc.relation.referencesen[6] A. Logunov, M. A. Mestriashvili, and VA Petrov. How were the Hilbert-Einstein equations discovered?: IFVE Preprint 2004-7. Protvino, Russia: 2004.
dc.relation.referencesen[7] R. F. Feynman., R. B. Leighton, M. Sands. The Feinman lectures on Physics. Massachusetts, Palo Alto, London, USA: Addison-Wesley publ. comp., inc. reading, 1964.
dc.relation.urihttp://www.decoder.ru/list/all/topic_312/
dc.relation.urihttp://new-idea.kulichki.net/pubfiles/151026192403.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectCoulomb’s law
dc.subjectLaw of conservation of the charge
dc.subjectRelativistic velocity
dc.subjectFinite velocity of propagation of an electric field
dc.subjectDynamics of motion of a free electron in a non-uniform electric field
dc.titleDynamics of motion of electron in electrical field
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v81n2_Tchaban_V-Dynamics_of_motion_of_electron_39-42.pdf
Size:
120.66 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v81n2_Tchaban_V-Dynamics_of_motion_of_electron_39-42__COVER.png
Size:
1.34 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.94 KB
Format:
Plain Text
Description: