Method of controlling a group of unmanned aircraft for searching and destruction of objects using artificial intelligence elements

dc.citation.epage710
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage694
dc.contributor.affiliationХарківський національний університет ВПС імені Івана Кожедуба
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationIvan Kozhedub Kharkiv National Air Force University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТимочко, О.
dc.contributor.authorТристан, А.
dc.contributor.authorМатющенко, О.
dc.contributor.authorШпак, Н.
dc.contributor.authorДвуліт, З.
dc.contributor.authorTymochko, O.
dc.contributor.authorTrystan, A.
dc.contributor.authorMatiushchenko, O.
dc.contributor.authorShpak, N.
dc.contributor.authorDvulit, Z.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:01Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ статті розроблено метод управління групою безпілотних літальних апаратів для пошуку та знищення об’єктів противника. Метод полягає у розпізнаванні ситуацій та коригуванні дій групи відповідно до неї. Основою методу є використання інтелектуальної системи підтримки прийняття рішень. Метод управління групою безпілотних літальних апаратів для пошуку та знищення об’єктів побудований відповідно до концепції мультиагентних систем. Розроблено інформаційну технологію процесів методу управління групою безпілотних літальних апаратів за методологією IDEF0.
dc.description.abstractThe article develops a method of controlling a group of unmanned aerial vehicles to search for and destroy enemy objects. The method is to recognize situations and adjust the actions of the group according to it. The basis of the method is the use of an intelligent decision support system. It provides situation recognition, using image recognition materials (intelligence materials), generalization of the obtained information and its comparison with the elements of the set of descriptions of typical situations. The method of controlling a group of unmanned aerial vehicles to search for and destroy enemy objects is built according to the concept of multi-agent systems – intelligent agents – UAVs. The information technology of processes of the method of control of a group of unmanned aerial vehicles according to the IDEF0 methodology is developed.
dc.format.extent694-710
dc.format.pages17
dc.identifier.citationMethod of controlling a group of unmanned aircraft for searching and destruction of objects using artificial intelligence elements / O. Tymochko, A. Trystan, O. Matiushchenko, N. Shpak, Z. Dvulit // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 694–710.
dc.identifier.citationenMethod of controlling a group of unmanned aircraft for searching and destruction of objects using artificial intelligence elements / O. Tymochko, A. Trystan, O. Matiushchenko, N. Shpak, Z. Dvulit // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 694–710.
dc.identifier.doidoi.org/10.23939/mmc2022.03.694
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63466
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] https://defence-ua.com/weapon_and_tech/bezdusha_sila_jak_vojujut_striljajut_jizdjat_nimetski_korejski_kitajski_ta_ukrajisnki-2572.html.
dc.relation.references[2] https://drive.google.com/file/d/1N3tahxAhqpNUIoz-xbgVDKG-1YJmgpsK/view.
dc.relation.references[3] Yevdokimenkov V. N., Krasil’shchikov M. N., Sebryakov G. G. Distributed intelligent control system for a group of unmanned aerial vehicles: architecture and software and mathematical support. Bulletin of the Southern Federal University. Technical sciences. No. 1. 174 p. (2016).
dc.relation.references[4] Harchenko V. P., Shmel’ova T. F., Znakovs’ka Ye. A., Buhayko D. O., Luppo O. Ye., Lazorenko V. A., Kharchenko V. P. Methodology of situational collective control of manned and unmanned aerial vehicles in a single airspace: scientific materials. In 3 volumes. Volume 2. Integrated corporate models for collective management of manned and UAVs in a single airspace in conditions of risk and uncertainty. (2017).
dc.relation.references[5] Wang X., Shen L., Liu Z. et al. Coordinated flight control of miniature fixed-wing UAV swarms: methods and experiments. Sci. China Inf. Sci. 62, 212204 (2019).
dc.relation.references[6] Hao C. H. E. N., Xiangke W. A. N. G., Lincheng S. H. E. N., Yirui C. O. N. G. Formation flight of fixedwing UAV swarms: A group-based hierarchical approach. Chinese Journal of Aeronautics. 34 (2), 504–515 (2021).
dc.relation.references[7] Kusyk J., Uyar M. U., Ma K. et al. Artificial intelligence and game theory controlled autonomous UAV swarms. Evol. Intel. 14, 1775–1792 (2021).
dc.relation.references[8] Kalyaev I. А., Gayduk А. R., Kapustyan S. G. Distributed Systems for Planning the Actions of Teams of Robots. М: Yanus-К, 2002. 292 p.
dc.relation.references[9] Abrosimov V. K. Group movement of intelligent flying vehicles in an antagonistic environment, Moscow: Nauka, 2013. 168 p. (2013).
dc.relation.references[10] Shmelova T., Bondarev D. Automated System of Controlling Unmanned Aerial Vehicles Group Flight: Application of Unmanned Aerial Vehicles Group. In Unmanned Aerial Vehicles in Civilian Logistics and Supply Chain Management (pp. 208–242). IGI Global (2019).
dc.relation.references[11] Cummings M. L. Operator interaction with centralized versus decentralized UAV architectures. Handbook of Unmanned Aerial Vehicles, pp. 977–992 (2015).
dc.relation.references[12] Tymochko O., Trystan A., Berezhnyi A., Sotnikov O., Matiushchenko O., Kryzhanivskyi I. Vehicles while Monitoring Behavior of Dynamic Objectsin a Forest–Steppe Area. International Journal of Emerging Trends in Engineering Research. 8 (7), 3208–3215 (2020).
dc.relation.references[13] Matiushchenko O. H., Kadubenko V. S., Syedash S. P., Sizon D. O. Multi-agent model of group use of unmanned aerial vehicles when performing special missions. Polish Journal Of Science. 1 (35), 13–19 (2021).
dc.relation.references[14] Yao P., Xie Z., Ren P. Optimal UAV Route Planning for Coverage Search of Stationary Target in River. IEEE Transactions on Control Systems Technology. 27 (2), 822–829 (2019).
dc.relation.references[15] Tymochko O., Trystan A., Chernavina O., Berezhnyi A. The method of planning the flight route of unmanned aerial vehicles while monitoring the behavior of dynamic objects in the forest-steppe area. Information Processing Systems. 3 (162), 95–110 (2020).
dc.relation.references[16] Cummings M. L., How J. P., Whitten A., Toupet O. The Impact of Human–Automation Collaboration in Decentralized Multiple Unmanned Vehicle Control. Proceedings of the IEEE. 100 (3), 660–671 (2012).
dc.relation.references[17] Shpak N., Sorochak O., Hvozd M., Sroka W. Risk evaluation of the reengineering projects: A case study analysis. Scientific Annals of Economics and Business. 65 (2), 215–226 (2018).
dc.relation.references[18] Shpak N., Odrekhivskyi M., Doroshkevych K., Sroka W. Simulation of Innovative Systems under Industry 4.0 Conditions. Social Sciences. 8, 202 (2019).
dc.relation.references[19] Russell S., Norvig P. Artificial intelligence: a modern approach (2002).
dc.relation.references[20] Bugaychenko D. Yu. Development and implementation of methods of formal-logical specification of selfadjusting multi-agent systems with time constraints: dis. Candidate of Phys.-Math. sciences. St. Petersburg, 261 p. (2007).
dc.relation.references[21] Al’pert S. I. Basic measures of similarity and new approaches to their application in the classification of hyperspectral space images. Mathematical machines and systems. 1, 143–151 (2019).
dc.relation.references[22] Presley A., Liles D. H. The use of IDEF0 for the design and specification of methodologies. In Proceedings of the 4th industrial engineering research conference (1995).
dc.relation.references[23] Berezhnyy A. O., Kryzhanivs’kyy I. M., Barabash O. V. The method of automated route planning of unmanned aerial vehicles taking into account the detection of stationary objects. Telecommunication and information technologies. 4 (65), 90–98 (2019).
dc.relation.references[24] Li R., Tapaswi M., Liao R., Jia J., Urtasun R., Fidler S. Situation Recognition with Graph Neural Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 4183–4192 (2017).
dc.relation.references[25] Yatskar M., Zettlemoyer L., Farhadi A. Situation Recognition: Visual Semantic Role Labeling for Image Understanding. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 5534–5542 (2016).
dc.relation.references[26] Horodnov V. P., Drobakha H. A., Yermoshyn M. O., Smirnov Ye. B., Tkachenko V. I. Modeling of combat operations of air defense forces and information support of their management processes (theory, practice, history of development): Monograph, Kh.: Khark. viys’k. un-t., 410 p. (2004).
dc.relation.references[27] Horodnov V. P., Malyuha V. H. Indicators and criteria for assessing the effectiveness of the structure of the Air Force control system. Honor and Law. 1 (64), 73–77 (2018).
dc.relation.references[28] Saaty T. L. Decision making with the analytic hierarchy process. International journal of services sciences. 1 (1), 83–98 (2008).
dc.relation.referencesen[1] https://defence-ua.com/weapon_and_tech/bezdusha_sila_jak_vojujut_striljajut_jizdjat_nimetski_korejski_kitajski_ta_ukrajisnki-2572.html.
dc.relation.referencesen[2] https://drive.google.com/file/d/1N3tahxAhqpNUIoz-xbgVDKG-1YJmgpsK/view.
dc.relation.referencesen[3] Yevdokimenkov V. N., Krasil’shchikov M. N., Sebryakov G. G. Distributed intelligent control system for a group of unmanned aerial vehicles: architecture and software and mathematical support. Bulletin of the Southern Federal University. Technical sciences. No. 1. 174 p. (2016).
dc.relation.referencesen[4] Harchenko V. P., Shmel’ova T. F., Znakovs’ka Ye. A., Buhayko D. O., Luppo O. Ye., Lazorenko V. A., Kharchenko V. P. Methodology of situational collective control of manned and unmanned aerial vehicles in a single airspace: scientific materials. In 3 volumes. Volume 2. Integrated corporate models for collective management of manned and UAVs in a single airspace in conditions of risk and uncertainty. (2017).
dc.relation.referencesen[5] Wang X., Shen L., Liu Z. et al. Coordinated flight control of miniature fixed-wing UAV swarms: methods and experiments. Sci. China Inf. Sci. 62, 212204 (2019).
dc.relation.referencesen[6] Hao C. H. E. N., Xiangke W. A. N. G., Lincheng S. H. E. N., Yirui C. O. N. G. Formation flight of fixedwing UAV swarms: A group-based hierarchical approach. Chinese Journal of Aeronautics. 34 (2), 504–515 (2021).
dc.relation.referencesen[7] Kusyk J., Uyar M. U., Ma K. et al. Artificial intelligence and game theory controlled autonomous UAV swarms. Evol. Intel. 14, 1775–1792 (2021).
dc.relation.referencesen[8] Kalyaev I. A., Gayduk A. R., Kapustyan S. G. Distributed Systems for Planning the Actions of Teams of Robots. M: Yanus-K, 2002. 292 p.
dc.relation.referencesen[9] Abrosimov V. K. Group movement of intelligent flying vehicles in an antagonistic environment, Moscow: Nauka, 2013. 168 p. (2013).
dc.relation.referencesen[10] Shmelova T., Bondarev D. Automated System of Controlling Unmanned Aerial Vehicles Group Flight: Application of Unmanned Aerial Vehicles Group. In Unmanned Aerial Vehicles in Civilian Logistics and Supply Chain Management (pp. 208–242). IGI Global (2019).
dc.relation.referencesen[11] Cummings M. L. Operator interaction with centralized versus decentralized UAV architectures. Handbook of Unmanned Aerial Vehicles, pp. 977–992 (2015).
dc.relation.referencesen[12] Tymochko O., Trystan A., Berezhnyi A., Sotnikov O., Matiushchenko O., Kryzhanivskyi I. Vehicles while Monitoring Behavior of Dynamic Objectsin a Forest–Steppe Area. International Journal of Emerging Trends in Engineering Research. 8 (7), 3208–3215 (2020).
dc.relation.referencesen[13] Matiushchenko O. H., Kadubenko V. S., Syedash S. P., Sizon D. O. Multi-agent model of group use of unmanned aerial vehicles when performing special missions. Polish Journal Of Science. 1 (35), 13–19 (2021).
dc.relation.referencesen[14] Yao P., Xie Z., Ren P. Optimal UAV Route Planning for Coverage Search of Stationary Target in River. IEEE Transactions on Control Systems Technology. 27 (2), 822–829 (2019).
dc.relation.referencesen[15] Tymochko O., Trystan A., Chernavina O., Berezhnyi A. The method of planning the flight route of unmanned aerial vehicles while monitoring the behavior of dynamic objects in the forest-steppe area. Information Processing Systems. 3 (162), 95–110 (2020).
dc.relation.referencesen[16] Cummings M. L., How J. P., Whitten A., Toupet O. The Impact of Human–Automation Collaboration in Decentralized Multiple Unmanned Vehicle Control. Proceedings of the IEEE. 100 (3), 660–671 (2012).
dc.relation.referencesen[17] Shpak N., Sorochak O., Hvozd M., Sroka W. Risk evaluation of the reengineering projects: A case study analysis. Scientific Annals of Economics and Business. 65 (2), 215–226 (2018).
dc.relation.referencesen[18] Shpak N., Odrekhivskyi M., Doroshkevych K., Sroka W. Simulation of Innovative Systems under Industry 4.0 Conditions. Social Sciences. 8, 202 (2019).
dc.relation.referencesen[19] Russell S., Norvig P. Artificial intelligence: a modern approach (2002).
dc.relation.referencesen[20] Bugaychenko D. Yu. Development and implementation of methods of formal-logical specification of selfadjusting multi-agent systems with time constraints: dis. Candidate of Phys.-Math. sciences. St. Petersburg, 261 p. (2007).
dc.relation.referencesen[21] Al’pert S. I. Basic measures of similarity and new approaches to their application in the classification of hyperspectral space images. Mathematical machines and systems. 1, 143–151 (2019).
dc.relation.referencesen[22] Presley A., Liles D. H. The use of IDEF0 for the design and specification of methodologies. In Proceedings of the 4th industrial engineering research conference (1995).
dc.relation.referencesen[23] Berezhnyy A. O., Kryzhanivs’kyy I. M., Barabash O. V. The method of automated route planning of unmanned aerial vehicles taking into account the detection of stationary objects. Telecommunication and information technologies. 4 (65), 90–98 (2019).
dc.relation.referencesen[24] Li R., Tapaswi M., Liao R., Jia J., Urtasun R., Fidler S. Situation Recognition with Graph Neural Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 4183–4192 (2017).
dc.relation.referencesen[25] Yatskar M., Zettlemoyer L., Farhadi A. Situation Recognition: Visual Semantic Role Labeling for Image Understanding. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 5534–5542 (2016).
dc.relation.referencesen[26] Horodnov V. P., Drobakha H. A., Yermoshyn M. O., Smirnov Ye. B., Tkachenko V. I. Modeling of combat operations of air defense forces and information support of their management processes (theory, practice, history of development): Monograph, Kh., Khark. viys’k. un-t., 410 p. (2004).
dc.relation.referencesen[27] Horodnov V. P., Malyuha V. H. Indicators and criteria for assessing the effectiveness of the structure of the Air Force control system. Honor and Law. 1 (64), 73–77 (2018).
dc.relation.referencesen[28] Saaty T. L. Decision making with the analytic hierarchy process. International journal of services sciences. 1 (1), 83–98 (2008).
dc.relation.urihttps://defence-ua.com/weapon_and_tech/bezdusha_sila_jak_vojujut_striljajut_jizdjat_nimetski_korejski_kitajski_ta_ukrajisnki-2572.html
dc.relation.urihttps://drive.google.com/file/d/1N3tahxAhqpNUIoz-xbgVDKG-1YJmgpsK/view
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectсистема управління
dc.subjectмультиагентна модель
dc.subjectштучний інтелект
dc.subjectгрупа безпілотних літальних апаратів
dc.subjectпошук та знищення об’єктів
dc.subjectавтономна система
dc.subjectлокальні правила самоорганізації
dc.subjectрозпізнавання ситуації
dc.subjectcontrol system
dc.subjectmulti-agent model
dc.subjectartificial intelligence
dc.subjectgroup of unmanned aerial vehicles
dc.subjectsearch for and destruction of objects
dc.subjectautonomous system
dc.subjectlocal rules of self-organization
dc.subjectsituation recognition
dc.titleMethod of controlling a group of unmanned aircraft for searching and destruction of objects using artificial intelligence elements
dc.title.alternativeМетод управління групою безпілотних літальних апаратів з метою пошуку і знищення об’єктів з використанням елементів штучного інтелекту
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Tymochko_O-Method_of_controlling_694-710.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Tymochko_O-Method_of_controlling_694-710__COVER.png
Size:
436.84 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: