Activation of polyethylene granules by finely dispersed zinc

dc.citation.epage197
dc.citation.issue1
dc.citation.spage191
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет в Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.authorКучеренко, А. М.
dc.contributor.authorНікітчук, О. Г.
dc.contributor.authorДулебова, Л.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorKucherenko, A. M.
dc.contributor.authorNikitchuk, O. G.
dc.contributor.authorDulebova, L.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:49Z
dc.date.available2024-01-22T08:14:49Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractНаведено результати експериментальних досліджень особливостей механічної активації гранул поліетилену дрібнодисперсним цинком у кульовому млині, а також результати дослідження хімічного міднення активованих гранул поліетилену. Досліджено вплив співвідношення гранул поліетилену і дрібнодисперсного цинку, швидкості обертання кульового млина і тривалості активації, а також ступеня завантаження компонентів на процес активації гранул поліетилену. Встановлено, що умови активації гранул поліетилену дрібнодисперсним цинком істотно впливають на процес металізації та ефективність міднення активованих гранул поліетилену.
dc.description.abstractThe results of experimental researches of features of mechanical activation of polyethylene granules with finely dispersed zinc in a ball mill, and also results of research of chemical copper plating of activated polyethylene granules are given. The influence of the ratio of polyethylene granules and fine zinc, the speed of rotation of the ball mill and the duration of activation, as well as the degree of loading of the components in the activation process of polyethylene granules was studied. It is established that the condition of activation of polyethylene granules with finely divided zinc has a significant impact on the metallization process and the copper efficiency of activated polyethylene granules.
dc.format.extent191-197
dc.format.pages7
dc.identifier.citationActivation of polyethylene granules by finely dispersed zinc / A. M. Kucherenko, O. G. Nikitchuk, L. Dulebova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 191–197.
dc.identifier.citationenActivation of polyethylene granules by finely dispersed zinc / A. M. Kucherenko, O. G. Nikitchuk, L. Dulebova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 191–197.
dc.identifier.doidoi.org/10.23939/ctas2021.01.191
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60858
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Muench, F., Eils, A., Toimil-Molares, M. E., Hossain, U. H., Radetinac, A., Stegmann, C., … Ensinger, W. (2014). Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and Coatings Technology, 242, 100–108. doi:10.1016/j.surfcoat.2014.01.024
dc.relation.references2. Huang, J., Gui, C., Ma, H., Li, P., Wu, W., & Chen, Z. (2020). Surface metallization of PET sheet: Fabrication of Pd nanoparticle/polymer brush to catalyse electroless Nickel plating. Composites Science and Technology. 108547. doi:10.1016/j.compscitech. 2020.108547
dc.relation.references3. Mallory,G. O., Hajdu, J. B. (Eds.). (1990). Electroless Plating: Fundamentals And Applications. American Electroplatersand Surface Finishers Society, Florida/William Andrew Publishing, New York.
dc.relation.references4. Uzunlar, E., Wilson, Z., & Kohl, P. A. (2013). Electroless Copper Deposition Using Sn/Ag Catalyst on Epoxy Laminates. Journal of The Electrochemical Society. 160(12), D3237–D3246. doi:10.1149/2.039312jes
dc.relation.references5. Charbonnier, M., Romand, M., Goepfert, Y., Léonard, D., & Bouadi, M. (2006). Copper metallization of polymers by a palladium-free electroless process. Surface and Coatings Technology, 200(18–19), 5478–5486. doi: 10.1016/j.surfcoat.2005.07.061
dc.relation.references6. Bicak, N., & Karagoz, B. (2008). Copper patterned polystyrene panels by reducing of surface bound Cu (II)-sulfonyl hydrazide complex. Surface and Coatings Technology, 202(9), 1581–1587. doi:10.1016/j.surfcoat. 2007.06.040
dc.relation.references7. Garcia, A., Berthelot, T., Viel, P., PoleselMaris, J., & Palacin, S. (2010). Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers. ACS Applied Materials & Interfaces, 2(11). 3043–3051. doi:10.1021/am100907j
dc.relation.references8. Suman, R., Nandan, D., Haleem, A., Bahl, S., & Javaid, M. (2020). Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.04.843
dc.relation.references9. Teixeira, L. A. C., & Santini, M. C. (2005). Surface conditioning of ABS for metallization without the use of chromium baths. Journal of Materials Processing Technology, 170(1–2), 37–41. doi:10.1016/j.jmatprotec. 2005.04.075
dc.relation.references10. Nomura, T., Nakagawa, H., Tashiro, K., Umeda, Y., Honma, H., & Takai, O. (2016). Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Transactions of the IMF, 94(6), 322–327. doi:10.1080/00202967.2016.1223805
dc.relation.references11. Jia, Y., Chen, J., Asahara, H., Hsu, Y.-I., Asoh, T.-A., & Uyama, H. (2020). Photooxidation of the ABS resin surface for electroless metal plating. Polymer, 122592. doi:10.1016/j.polymer.2020.122592
dc.relation.references12. Magallón Cacho, L., Pérez Bueno, J. J., Meas Vong, Y., Stremsdoerfer, G., Espinoza Beltrán, F. J., & Martínez Vega, J. (2014). Novel green process to modify ABS surface before its metallization: optophysic treatment. Journal of Coatings Technology and Research, 12(2),313–323. doi:10.1007/s11998-014-9632-5
dc.relation.references13. Song H., Choi J. M., Kim, T.W. (2013). Surface modifcation by atmospheric pressure DBDs plasma: application to electroless Ni plating on ABS resin plates. Trans. Electr. Electron. Mater, 14 (3), 133–138. https://doi.org/10.4313/TEEM.2013.14.3.133.
dc.relation.references14. Seiler, M., Gruben, J., Knauft, A., Barz, A., Bliedtner, J. (2020) Laser beam activation of polymer surfaces for selective chemical metallization, ProcediaCIRP, 94, 891–894. https://doi.org/10.1016/j.procir.2020.09.067.
dc.relation.references15. Rytlewski, P., Jagodziński, B., Malinowski, R., Budner, B., Moraczewski, K., Wojciechowska, A., & Augustyn, P. (2019). Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 144429.doi:10.1016/j.apsusc.2019.144429
dc.relation.references16. Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., ... Palacin, S. (2010). ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Applied Materials and Interfaces, 2(4), 1177–1183. doi:10.1021/am1000163
dc.relation.references17. Jiang, P., Ji, Z., Wang, X., & Zhou, F. (2020). Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C., 8(36), 12380–12411. doi:10.1039/d0tc02850a.
dc.relation.references18. Atli, A., Trouillet, V., Cadete Santos Aires, F. J., Ehret, E., Lemaire, E., & Simon, S. (2021). A generalized sample preparation method by incorporation of metal–organic compounds into polymers for electroless metallization.Journal of Applied Polymer Science, 138(17). doi: 10.1002/app.50276
dc.relation.references19. Atli, A., Simon, S., Cadete Santos Aires, F. J., Cardenas, L., Ehret, E., & Lourdin, P. (2017). A new strategy to activate liquid crystal polymer samples for electroless copper deposition. Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44397
dc.relation.references20. Zhan, J., Tamura, T., Li, X., Ma, Z., Sone, M., Yoshino, M., ... Sato, H. (2020). Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 36. doi:10.1016/j.addma.2020.101556
dc.relation.references21. Moravskyi, V., Kucherenko, А., Kuznetsova, М., Dziaman, I., Grytsenko, О., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. EasternEuropean Journal of Enterprise Technologies, 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446
dc.relation.references22. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140
dc.relation.references23. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, М., Tsimbalista, Т., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462
dc.relation.references24. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. and Majerníková, J. (2020). Utilization of Polypropylene in the Production of MetalFilled Polymer Composites: Development and Characteristics. Materials, 13, 2856. doi.org/10.3390/ma13122856.
dc.relation.referencesen1. Muench, F., Eils, A., Toimil-Molares, M. E., Hossain, U. H., Radetinac, A., Stegmann, C., … Ensinger, W. (2014). Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and Coatings Technology, 242, 100–108. doi:10.1016/j.surfcoat.2014.01.024
dc.relation.referencesen2. Huang, J., Gui, C., Ma, H., Li, P., Wu, W., & Chen, Z. (2020). Surface metallization of PET sheet: Fabrication of Pd nanoparticle/polymer brush to catalyse electroless Nickel plating. Composites Science and Technology. 108547. doi:10.1016/j.compscitech. 2020.108547
dc.relation.referencesen3. Mallory,G. O., Hajdu, J. B. (Eds.). (1990). Electroless Plating: Fundamentals And Applications. American Electroplatersand Surface Finishers Society, Florida/William Andrew Publishing, New York.
dc.relation.referencesen4. Uzunlar, E., Wilson, Z., & Kohl, P. A. (2013). Electroless Copper Deposition Using Sn/Ag Catalyst on Epoxy Laminates. Journal of The Electrochemical Society. 160(12), D3237–D3246. doi:10.1149/2.039312jes
dc.relation.referencesen5. Charbonnier, M., Romand, M., Goepfert, Y., Léonard, D., & Bouadi, M. (2006). Copper metallization of polymers by a palladium-free electroless process. Surface and Coatings Technology, 200(18–19), 5478–5486. doi: 10.1016/j.surfcoat.2005.07.061
dc.relation.referencesen6. Bicak, N., & Karagoz, B. (2008). Copper patterned polystyrene panels by reducing of surface bound Cu (II)-sulfonyl hydrazide complex. Surface and Coatings Technology, 202(9), 1581–1587. doi:10.1016/j.surfcoat. 2007.06.040
dc.relation.referencesen7. Garcia, A., Berthelot, T., Viel, P., PoleselMaris, J., & Palacin, S. (2010). Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers. ACS Applied Materials & Interfaces, 2(11). 3043–3051. doi:10.1021/am100907j
dc.relation.referencesen8. Suman, R., Nandan, D., Haleem, A., Bahl, S., & Javaid, M. (2020). Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.04.843
dc.relation.referencesen9. Teixeira, L. A. C., & Santini, M. C. (2005). Surface conditioning of ABS for metallization without the use of chromium baths. Journal of Materials Processing Technology, 170(1–2), 37–41. doi:10.1016/j.jmatprotec. 2005.04.075
dc.relation.referencesen10. Nomura, T., Nakagawa, H., Tashiro, K., Umeda, Y., Honma, H., & Takai, O. (2016). Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Transactions of the IMF, 94(6), 322–327. doi:10.1080/00202967.2016.1223805
dc.relation.referencesen11. Jia, Y., Chen, J., Asahara, H., Hsu, Y.-I., Asoh, T.-A., & Uyama, H. (2020). Photooxidation of the ABS resin surface for electroless metal plating. Polymer, 122592. doi:10.1016/j.polymer.2020.122592
dc.relation.referencesen12. Magallón Cacho, L., Pérez Bueno, J. J., Meas Vong, Y., Stremsdoerfer, G., Espinoza Beltrán, F. J., & Martínez Vega, J. (2014). Novel green process to modify ABS surface before its metallization: optophysic treatment. Journal of Coatings Technology and Research, 12(2),313–323. doi:10.1007/s11998-014-9632-5
dc.relation.referencesen13. Song H., Choi J. M., Kim, T.W. (2013). Surface modifcation by atmospheric pressure DBDs plasma: application to electroless Ni plating on ABS resin plates. Trans. Electr. Electron. Mater, 14 (3), 133–138. https://doi.org/10.4313/TEEM.2013.14.3.133.
dc.relation.referencesen14. Seiler, M., Gruben, J., Knauft, A., Barz, A., Bliedtner, J. (2020) Laser beam activation of polymer surfaces for selective chemical metallization, ProcediaCIRP, 94, 891–894. https://doi.org/10.1016/j.procir.2020.09.067.
dc.relation.referencesen15. Rytlewski, P., Jagodziński, B., Malinowski, R., Budner, B., Moraczewski, K., Wojciechowska, A., & Augustyn, P. (2019). Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 144429.doi:10.1016/j.apsusc.2019.144429
dc.relation.referencesen16. Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., ... Palacin, S. (2010). ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Applied Materials and Interfaces, 2(4), 1177–1183. doi:10.1021/am1000163
dc.relation.referencesen17. Jiang, P., Ji, Z., Wang, X., & Zhou, F. (2020). Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C., 8(36), 12380–12411. doi:10.1039/d0tc02850a.
dc.relation.referencesen18. Atli, A., Trouillet, V., Cadete Santos Aires, F. J., Ehret, E., Lemaire, E., & Simon, S. (2021). A generalized sample preparation method by incorporation of metal–organic compounds into polymers for electroless metallization.Journal of Applied Polymer Science, 138(17). doi: 10.1002/app.50276
dc.relation.referencesen19. Atli, A., Simon, S., Cadete Santos Aires, F. J., Cardenas, L., Ehret, E., & Lourdin, P. (2017). A new strategy to activate liquid crystal polymer samples for electroless copper deposition. Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44397
dc.relation.referencesen20. Zhan, J., Tamura, T., Li, X., Ma, Z., Sone, M., Yoshino, M., ... Sato, H. (2020). Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 36. doi:10.1016/j.addma.2020.101556
dc.relation.referencesen21. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dziaman, I., Grytsenko, O., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. EasternEuropean Journal of Enterprise Technologies, 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446
dc.relation.referencesen22. Kucherenko, A. N., Mankevych, S. O., Kuznetsova, M. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140
dc.relation.referencesen23. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462
dc.relation.referencesen24. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. and Majerníková, J. (2020). Utilization of Polypropylene in the Production of MetalFilled Polymer Composites: Development and Characteristics. Materials, 13, 2856. doi.org/10.3390/ma13122856.
dc.relation.urihttps://doi.org/10.4313/TEEM.2013.14.3.133
dc.relation.urihttps://doi.org/10.1016/j.procir.2020.09.067
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectактивація
dc.subjectкульовий млин
dc.subjectгранули
dc.subjectполіетилен
dc.subjectцинк
dc.subjectхімічна металізація
dc.subjectactivation
dc.subjectball mill
dc.subjectgranules
dc.subjectpolyethylene
dc.subjectzinc
dc.subjectchemical metallization
dc.titleActivation of polyethylene granules by finely dispersed zinc
dc.title.alternativeАктивація гранул поліетилену дрібнодисперсним цинком
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Kucherenko_A_M-Activation_of_polyethylene_191-197.pdf
Size:
418.95 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Kucherenko_A_M-Activation_of_polyethylene_191-197__COVER.png
Size:
502.16 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: