Activation of polyethylene granules by finely dispersed zinc
dc.citation.epage | 197 | |
dc.citation.issue | 1 | |
dc.citation.spage | 191 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Технічний університет в Кошице | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Technical University of Kosice | |
dc.contributor.author | Кучеренко, А. М. | |
dc.contributor.author | Нікітчук, О. Г. | |
dc.contributor.author | Дулебова, Л. | |
dc.contributor.author | Моравський, В. С. | |
dc.contributor.author | Kucherenko, A. M. | |
dc.contributor.author | Nikitchuk, O. G. | |
dc.contributor.author | Dulebova, L. | |
dc.contributor.author | Moravskyi, V. S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:49Z | |
dc.date.available | 2024-01-22T08:14:49Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Наведено результати експериментальних досліджень особливостей механічної активації гранул поліетилену дрібнодисперсним цинком у кульовому млині, а також результати дослідження хімічного міднення активованих гранул поліетилену. Досліджено вплив співвідношення гранул поліетилену і дрібнодисперсного цинку, швидкості обертання кульового млина і тривалості активації, а також ступеня завантаження компонентів на процес активації гранул поліетилену. Встановлено, що умови активації гранул поліетилену дрібнодисперсним цинком істотно впливають на процес металізації та ефективність міднення активованих гранул поліетилену. | |
dc.description.abstract | The results of experimental researches of features of mechanical activation of polyethylene granules with finely dispersed zinc in a ball mill, and also results of research of chemical copper plating of activated polyethylene granules are given. The influence of the ratio of polyethylene granules and fine zinc, the speed of rotation of the ball mill and the duration of activation, as well as the degree of loading of the components in the activation process of polyethylene granules was studied. It is established that the condition of activation of polyethylene granules with finely divided zinc has a significant impact on the metallization process and the copper efficiency of activated polyethylene granules. | |
dc.format.extent | 191-197 | |
dc.format.pages | 7 | |
dc.identifier.citation | Activation of polyethylene granules by finely dispersed zinc / A. M. Kucherenko, O. G. Nikitchuk, L. Dulebova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 191–197. | |
dc.identifier.citationen | Activation of polyethylene granules by finely dispersed zinc / A. M. Kucherenko, O. G. Nikitchuk, L. Dulebova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 191–197. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.01.191 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60858 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Muench, F., Eils, A., Toimil-Molares, M. E., Hossain, U. H., Radetinac, A., Stegmann, C., … Ensinger, W. (2014). Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and Coatings Technology, 242, 100–108. doi:10.1016/j.surfcoat.2014.01.024 | |
dc.relation.references | 2. Huang, J., Gui, C., Ma, H., Li, P., Wu, W., & Chen, Z. (2020). Surface metallization of PET sheet: Fabrication of Pd nanoparticle/polymer brush to catalyse electroless Nickel plating. Composites Science and Technology. 108547. doi:10.1016/j.compscitech. 2020.108547 | |
dc.relation.references | 3. Mallory,G. O., Hajdu, J. B. (Eds.). (1990). Electroless Plating: Fundamentals And Applications. American Electroplatersand Surface Finishers Society, Florida/William Andrew Publishing, New York. | |
dc.relation.references | 4. Uzunlar, E., Wilson, Z., & Kohl, P. A. (2013). Electroless Copper Deposition Using Sn/Ag Catalyst on Epoxy Laminates. Journal of The Electrochemical Society. 160(12), D3237–D3246. doi:10.1149/2.039312jes | |
dc.relation.references | 5. Charbonnier, M., Romand, M., Goepfert, Y., Léonard, D., & Bouadi, M. (2006). Copper metallization of polymers by a palladium-free electroless process. Surface and Coatings Technology, 200(18–19), 5478–5486. doi: 10.1016/j.surfcoat.2005.07.061 | |
dc.relation.references | 6. Bicak, N., & Karagoz, B. (2008). Copper patterned polystyrene panels by reducing of surface bound Cu (II)-sulfonyl hydrazide complex. Surface and Coatings Technology, 202(9), 1581–1587. doi:10.1016/j.surfcoat. 2007.06.040 | |
dc.relation.references | 7. Garcia, A., Berthelot, T., Viel, P., PoleselMaris, J., & Palacin, S. (2010). Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers. ACS Applied Materials & Interfaces, 2(11). 3043–3051. doi:10.1021/am100907j | |
dc.relation.references | 8. Suman, R., Nandan, D., Haleem, A., Bahl, S., & Javaid, M. (2020). Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.04.843 | |
dc.relation.references | 9. Teixeira, L. A. C., & Santini, M. C. (2005). Surface conditioning of ABS for metallization without the use of chromium baths. Journal of Materials Processing Technology, 170(1–2), 37–41. doi:10.1016/j.jmatprotec. 2005.04.075 | |
dc.relation.references | 10. Nomura, T., Nakagawa, H., Tashiro, K., Umeda, Y., Honma, H., & Takai, O. (2016). Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Transactions of the IMF, 94(6), 322–327. doi:10.1080/00202967.2016.1223805 | |
dc.relation.references | 11. Jia, Y., Chen, J., Asahara, H., Hsu, Y.-I., Asoh, T.-A., & Uyama, H. (2020). Photooxidation of the ABS resin surface for electroless metal plating. Polymer, 122592. doi:10.1016/j.polymer.2020.122592 | |
dc.relation.references | 12. Magallón Cacho, L., Pérez Bueno, J. J., Meas Vong, Y., Stremsdoerfer, G., Espinoza Beltrán, F. J., & Martínez Vega, J. (2014). Novel green process to modify ABS surface before its metallization: optophysic treatment. Journal of Coatings Technology and Research, 12(2),313–323. doi:10.1007/s11998-014-9632-5 | |
dc.relation.references | 13. Song H., Choi J. M., Kim, T.W. (2013). Surface modifcation by atmospheric pressure DBDs plasma: application to electroless Ni plating on ABS resin plates. Trans. Electr. Electron. Mater, 14 (3), 133–138. https://doi.org/10.4313/TEEM.2013.14.3.133. | |
dc.relation.references | 14. Seiler, M., Gruben, J., Knauft, A., Barz, A., Bliedtner, J. (2020) Laser beam activation of polymer surfaces for selective chemical metallization, ProcediaCIRP, 94, 891–894. https://doi.org/10.1016/j.procir.2020.09.067. | |
dc.relation.references | 15. Rytlewski, P., Jagodziński, B., Malinowski, R., Budner, B., Moraczewski, K., Wojciechowska, A., & Augustyn, P. (2019). Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 144429.doi:10.1016/j.apsusc.2019.144429 | |
dc.relation.references | 16. Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., ... Palacin, S. (2010). ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Applied Materials and Interfaces, 2(4), 1177–1183. doi:10.1021/am1000163 | |
dc.relation.references | 17. Jiang, P., Ji, Z., Wang, X., & Zhou, F. (2020). Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C., 8(36), 12380–12411. doi:10.1039/d0tc02850a. | |
dc.relation.references | 18. Atli, A., Trouillet, V., Cadete Santos Aires, F. J., Ehret, E., Lemaire, E., & Simon, S. (2021). A generalized sample preparation method by incorporation of metal–organic compounds into polymers for electroless metallization.Journal of Applied Polymer Science, 138(17). doi: 10.1002/app.50276 | |
dc.relation.references | 19. Atli, A., Simon, S., Cadete Santos Aires, F. J., Cardenas, L., Ehret, E., & Lourdin, P. (2017). A new strategy to activate liquid crystal polymer samples for electroless copper deposition. Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44397 | |
dc.relation.references | 20. Zhan, J., Tamura, T., Li, X., Ma, Z., Sone, M., Yoshino, M., ... Sato, H. (2020). Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 36. doi:10.1016/j.addma.2020.101556 | |
dc.relation.references | 21. Moravskyi, V., Kucherenko, А., Kuznetsova, М., Dziaman, I., Grytsenko, О., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. EasternEuropean Journal of Enterprise Technologies, 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446 | |
dc.relation.references | 22. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140 | |
dc.relation.references | 23. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, М., Tsimbalista, Т., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462 | |
dc.relation.references | 24. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. and Majerníková, J. (2020). Utilization of Polypropylene in the Production of MetalFilled Polymer Composites: Development and Characteristics. Materials, 13, 2856. doi.org/10.3390/ma13122856. | |
dc.relation.referencesen | 1. Muench, F., Eils, A., Toimil-Molares, M. E., Hossain, U. H., Radetinac, A., Stegmann, C., … Ensinger, W. (2014). Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surface and Coatings Technology, 242, 100–108. doi:10.1016/j.surfcoat.2014.01.024 | |
dc.relation.referencesen | 2. Huang, J., Gui, C., Ma, H., Li, P., Wu, W., & Chen, Z. (2020). Surface metallization of PET sheet: Fabrication of Pd nanoparticle/polymer brush to catalyse electroless Nickel plating. Composites Science and Technology. 108547. doi:10.1016/j.compscitech. 2020.108547 | |
dc.relation.referencesen | 3. Mallory,G. O., Hajdu, J. B. (Eds.). (1990). Electroless Plating: Fundamentals And Applications. American Electroplatersand Surface Finishers Society, Florida/William Andrew Publishing, New York. | |
dc.relation.referencesen | 4. Uzunlar, E., Wilson, Z., & Kohl, P. A. (2013). Electroless Copper Deposition Using Sn/Ag Catalyst on Epoxy Laminates. Journal of The Electrochemical Society. 160(12), D3237–D3246. doi:10.1149/2.039312jes | |
dc.relation.referencesen | 5. Charbonnier, M., Romand, M., Goepfert, Y., Léonard, D., & Bouadi, M. (2006). Copper metallization of polymers by a palladium-free electroless process. Surface and Coatings Technology, 200(18–19), 5478–5486. doi: 10.1016/j.surfcoat.2005.07.061 | |
dc.relation.referencesen | 6. Bicak, N., & Karagoz, B. (2008). Copper patterned polystyrene panels by reducing of surface bound Cu (II)-sulfonyl hydrazide complex. Surface and Coatings Technology, 202(9), 1581–1587. doi:10.1016/j.surfcoat. 2007.06.040 | |
dc.relation.referencesen | 7. Garcia, A., Berthelot, T., Viel, P., PoleselMaris, J., & Palacin, S. (2010). Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers. ACS Applied Materials & Interfaces, 2(11). 3043–3051. doi:10.1021/am100907j | |
dc.relation.referencesen | 8. Suman, R., Nandan, D., Haleem, A., Bahl, S., & Javaid, M. (2020). Experimental study of electroless plating on acrylonitrile butadiene styrene polymer for obtaining new eco-friendly chromium-free processes. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.04.843 | |
dc.relation.referencesen | 9. Teixeira, L. A. C., & Santini, M. C. (2005). Surface conditioning of ABS for metallization without the use of chromium baths. Journal of Materials Processing Technology, 170(1–2), 37–41. doi:10.1016/j.jmatprotec. 2005.04.075 | |
dc.relation.referencesen | 10. Nomura, T., Nakagawa, H., Tashiro, K., Umeda, Y., Honma, H., & Takai, O. (2016). Metallisation on ABS plastics using fine-bubbles low ozonated water complying with REACH regulations. Transactions of the IMF, 94(6), 322–327. doi:10.1080/00202967.2016.1223805 | |
dc.relation.referencesen | 11. Jia, Y., Chen, J., Asahara, H., Hsu, Y.-I., Asoh, T.-A., & Uyama, H. (2020). Photooxidation of the ABS resin surface for electroless metal plating. Polymer, 122592. doi:10.1016/j.polymer.2020.122592 | |
dc.relation.referencesen | 12. Magallón Cacho, L., Pérez Bueno, J. J., Meas Vong, Y., Stremsdoerfer, G., Espinoza Beltrán, F. J., & Martínez Vega, J. (2014). Novel green process to modify ABS surface before its metallization: optophysic treatment. Journal of Coatings Technology and Research, 12(2),313–323. doi:10.1007/s11998-014-9632-5 | |
dc.relation.referencesen | 13. Song H., Choi J. M., Kim, T.W. (2013). Surface modifcation by atmospheric pressure DBDs plasma: application to electroless Ni plating on ABS resin plates. Trans. Electr. Electron. Mater, 14 (3), 133–138. https://doi.org/10.4313/TEEM.2013.14.3.133. | |
dc.relation.referencesen | 14. Seiler, M., Gruben, J., Knauft, A., Barz, A., Bliedtner, J. (2020) Laser beam activation of polymer surfaces for selective chemical metallization, ProcediaCIRP, 94, 891–894. https://doi.org/10.1016/j.procir.2020.09.067. | |
dc.relation.referencesen | 15. Rytlewski, P., Jagodziński, B., Malinowski, R., Budner, B., Moraczewski, K., Wojciechowska, A., & Augustyn, P. (2019). Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 144429.doi:10.1016/j.apsusc.2019.144429 | |
dc.relation.referencesen | 16. Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., ... Palacin, S. (2010). ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Applied Materials and Interfaces, 2(4), 1177–1183. doi:10.1021/am1000163 | |
dc.relation.referencesen | 17. Jiang, P., Ji, Z., Wang, X., & Zhou, F. (2020). Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C., 8(36), 12380–12411. doi:10.1039/d0tc02850a. | |
dc.relation.referencesen | 18. Atli, A., Trouillet, V., Cadete Santos Aires, F. J., Ehret, E., Lemaire, E., & Simon, S. (2021). A generalized sample preparation method by incorporation of metal–organic compounds into polymers for electroless metallization.Journal of Applied Polymer Science, 138(17). doi: 10.1002/app.50276 | |
dc.relation.referencesen | 19. Atli, A., Simon, S., Cadete Santos Aires, F. J., Cardenas, L., Ehret, E., & Lourdin, P. (2017). A new strategy to activate liquid crystal polymer samples for electroless copper deposition. Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44397 | |
dc.relation.referencesen | 20. Zhan, J., Tamura, T., Li, X., Ma, Z., Sone, M., Yoshino, M., ... Sato, H. (2020). Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 36. doi:10.1016/j.addma.2020.101556 | |
dc.relation.referencesen | 21. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dziaman, I., Grytsenko, O., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. EasternEuropean Journal of Enterprise Technologies, 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446 | |
dc.relation.referencesen | 22. Kucherenko, A. N., Mankevych, S. O., Kuznetsova, M. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140 | |
dc.relation.referencesen | 23. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies, 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462 | |
dc.relation.referencesen | 24. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dulebova, L., Spišák, E. and Majerníková, J. (2020). Utilization of Polypropylene in the Production of MetalFilled Polymer Composites: Development and Characteristics. Materials, 13, 2856. doi.org/10.3390/ma13122856. | |
dc.relation.uri | https://doi.org/10.4313/TEEM.2013.14.3.133 | |
dc.relation.uri | https://doi.org/10.1016/j.procir.2020.09.067 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | активація | |
dc.subject | кульовий млин | |
dc.subject | гранули | |
dc.subject | поліетилен | |
dc.subject | цинк | |
dc.subject | хімічна металізація | |
dc.subject | activation | |
dc.subject | ball mill | |
dc.subject | granules | |
dc.subject | polyethylene | |
dc.subject | zinc | |
dc.subject | chemical metallization | |
dc.title | Activation of polyethylene granules by finely dispersed zinc | |
dc.title.alternative | Активація гранул поліетилену дрібнодисперсним цинком | |
dc.type | Article |
Files
License bundle
1 - 1 of 1