Mitigation of magnetic field from overhead power lines with triangular conductor arrangements using active shielding systems

dc.citation.epage13
dc.citation.issue1
dc.citation.spage5
dc.contributor.affiliationState Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”
dc.contributor.affiliationKharkiv National Automobile and Highway University
dc.contributor.affiliationUkrainian Engineering and Pedagogical Academy
dc.contributor.authorКузнецов, Борис
dc.contributor.authorБовдуй, Ігор
dc.contributor.authorНікітіна, Тетяна
dc.contributor.authorКоломієць, Валерій
dc.contributor.authorКобилянський, Борис
dc.contributor.authorKuznetsov, Borys
dc.contributor.authorBovdui, Ihor
dc.contributor.authorNikitina, Tetyana
dc.contributor.authorKolomiets, Valeriy
dc.contributor.authorKobylianskyi, Borys
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-26T11:48:12Z
dc.date.available2020-02-26T11:48:12Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractУперше проведено синтез, теоретичні та експериментальні дослідження робастної системи активного екранування магнітного поля, яке створюється повітряними лініями електропередачі із трикутним розташуванням проводів. Синтез заснований на вирішенні багатокритеріальної стохастичної гри, в якій векторний виграш обчислюється на підставі рішень рівнянь Максвелла в квазістаціонарному наближенні. Рішення гри знаходиться на основі алгоритмів стохастичної мультиагентної оптимізації мультіроем частинок. Показано можливість суттєвого зниження рівня індукції вихідного магнітного поля у заданому просторі і зниження чутливості системи до невизначеності параметрів системи. Для екранування магнітного поля в п’ятиповерховій будівлі необхідно три екрануючої обмотки, а для екранування того ж магнітного поля в одноповерховій будівлі досить двох екрануючих обмоток. Наведено практичні рекомендації з обгрунтованогог вибору просторового положення екрануючих обмоток робастной системи активного екранування магнітного поля, яке створюється лініями електропередачі із трикутним розташуванням проводів.
dc.description.abstractThe paper presents results of synthesis, theoretical, and experimental studies of a robust system of active shielding of the magnetic field generated by overhead power lines with triangular conductor arrangements. The synthesis is based on the solution of a multi-criteria stochastic game, in which the vector payoff is calculated on the basis of the Maxwell equations solutions in a quasi-stationary approximation. The solution to the game is based on the algorithms of stochastic multiagent particle multiswarm optimization. The possibility of a significant mitigation of magnetic flux density and a reduction in the sensitivity of the system to the plant parameters uncertainty is shown. Three shielding coils are required to shield a magnetic field in a five-story building, and two shielding coils are sufficient to shield the same magnetic field in a singlestory building. Practical recommendations are given on the reasonable choice of the spatial arrangements of the shielding coils of a robust system of active shielding of the magnetic field generated by an overhead power line with a triangular arrangement of conductors. The experimental research into the robust system of active shielding model of the magnetic field generated by overhead power lines with a triangular arrangement of conductors and two shielding coils is carried out. The comparison of experimental and calculated results of the magnetic flux density values in the shielding space shows that their spread does not exceed 30 %.
dc.format.extent5-13
dc.format.pages9
dc.identifier.citationMitigation of magnetic field from overhead power lines with triangular conductor arrangements using active shielding systems / Borys Kuznetsov, Ihor Bovdui, Tetyana Nikitina, Valeriy Kolomiets, Borys Kobylianskyi // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 5–13.
dc.identifier.citationenMitigation of magnetic field from overhead power lines with triangular conductor arrangements using active shielding systems / Borys Kuznetsov, Ihor Bovdui, Tetyana Nikitina, Valeriy Kolomiets, Borys Kobylianskyi // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 5–13.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46082
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (9), 2019
dc.relation.references1. “Active Magnetic Shielding (Field Cancellation)”, http://www.emfservices.com/afcs.html, April 09 2019.
dc.relation.references2. S. Celozzi and F. Garzia, “Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization”, IEE Proc. Sci. Meas. Technol., vol. 151, no. 1, pp. 2–7, Rome, Italy, 2004.
dc.relation.references3. A. Shenkman, N. Sonkin, and V. Kamensky, “Active protection from electromagnetic field hazards of a high voltage power line”, HAIT Journal of Science and Engineering, vol. 2, no. 2, pp. 254–265, 2005.
dc.relation.references4. H. Beltran, V. Fuster, and M. García, “Magnetic field reduction screening system for a magnetic field source used in industrial applications”, 9 Congreso Hispano Luso de Ingeniería Eléctrica (9CHLIE), рp. 84–99, Marbella (Málaga), 2005.
dc.relation.references5. V. Yu. Rozov, V. S. Grinchenko, D. Ye. Pelevin, and K.V. Chunikhin, “Simulation of electromagnetic field in residential buildings located near overhead lines”, Tekhnichna Elektrodynamika, no. 3, pp. 6–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016.
dc.relation.references6. Juan Carlos Bravo-Rodriguez, Juan Carlos del-PinoLуpez and Pedro Cruz-Romero, “A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems Energies”, 1332, p. 12, 2019.
dc.relation.references7. S. Celozzi Active compensation and partial shields for the power-frequency magnetic field reduction’ / S. Celozzi // Proc. IEEE Int. Symp. On Electromagnetic Compatibility, Minneapolis, USA, 2002. – Pp. 222–226.
dc.relation.references8. V. Yu. Rozov, S. Yu. Reutskyi, D. Ye. Pelevin, and O. Yu Pyliugina, “The magnetic field of transmission lines and the methods of its mitigation to a safe level”, Tekhnichna Elektrodynamika, no. 2, pp. 3–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2013
dc.relation.references9. H. J. M. Brake, R. Huonker, and H. Rogalla, “New results in active noise compensation for magnetically shielded rooms”, Meas. Sci. Technol., no. 4, pp. 1370–1375, 1993.
dc.relation.references10. A. Schnabel, J. Voigt, M. Burghoff, and S. KnappeGruneberg, “Magnetic Shielding State of art, new magnetic shielding and active magnetic shielding for low noise applications”, vol. 51, no. 5, pp. 137–142, Rome, Italy, 2003.
dc.relation.references11. “The World Health Organization, “The International EMF Project””, http://www.who.int/peh-emf/project/en/, Feb 17, 2017.
dc.relation.references12. Electrical installation regulations, 5th ed., The Ministry of Energy and Coal Mining of Ukraine, 2014.
dc.relation.references13. P. Cruz Romero, C. Mitchell Izquierdo, and M. Payan Burgos, “Optimal split-phase configurations”, in Proc. 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), Volume 3, p. 5, Porto, Portugal, 10–13 September 2001.
dc.relation.references14. P. Cruz Romero, C. Izquierdo, M. Burgos, L. F. Ferrer, F. Soto, C. L. Lanos, and J. D. Pacheco, “Magnetic field mitigation in power lines with passive and active loops”, in Proc. CIGR Session, Paris, France, 25–30 August 2002.
dc.relation.references15. S. Barsali, R. Giglioli, and D. Poli, “Active shielding of overhead line magnetic field: Design and applications”, Electr. Power Syst. Res, 110, pp. 55–63, 2014.
dc.relation.references16. J.C. del-Pino-Lуpez and P. Cruz-Romero, “Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables”, IEEE Trans. Power Deliv., 26, pp. 2659–2667, 2011.
dc.relation.references17. J. C. del-Pino-Lуpez, P. Cruz-Romero, and L. Serrano-Iribarnegaray, “Impact of electromagnetic losses in closed two-component magnetic shields on the ampacity of underground power cables”, Prog. Electromagn. Res., 135, pp. 601–625, 2013.
dc.relation.references18. J. C. del-Pino-Lуpez, L. Giaccone, A. Canova, P. Cruz-Romero, “Design of active loops for magnetic field mitigation in MV/LV substation surroundings”, Electr. Power Syst. Res., 119, pp. 337–344, 2015.
dc.relation.references19. J. C. del-Pino-Lуpez, L. Giaccone, A. Canova, and P. Cruz-Romero, “Ga-based active loop optimization for magnetic field mitigation of MV/LV substations”, IEEE Lat. Am. Trans., 12, pp. 1055–1061, 2014.
dc.relation.references20. A. Canova and L. Giaccone, “Real-time optimization of active loops for the magnetic field minimization”, Int. J. Appl. Electromagn. Mech.,56, pp. 97–106, 2018.
dc.relation.references21. A. Canova, J. C. del Pino Lуpez, L. Giaccone, and M. Manca, “Active shielding system for elf magnetic fields”, IEEE Transaction on Magnetics, no. 3, pp. 51, 2015.
dc.relation.references22. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method”, IEEE Transactions on Power Electronics, no. 20(4), pp. 963–973, Jul, 2005.
dc.relation.references23. B. Kuznetsov, A. Turenko, T. Nikitina, A. Voloshko, and V. Kolomiets, “Method of synthesis of closed-loop systems of active shielding magnetic field of power transmission lines”, Tekhnichna Elektrodynamika, no. 4, pp. 8–10, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016.
dc.relation.references24. B. I. Kuznetsov, T. B. Nikitina, A. V. Voloshko, I. V. Bovdyj, E.V. Vinichenko, and B. B. Kobilyanskiy, “Synthesis of an active shielding system of the magnetic field of power lines based on multiobjective optimization”, Electrical Engineering & Electromechanics, vol. 6, pp. 26–30, 2016.
dc.relation.references25. Z. Ren, M.-T. Pham, and C. S. Koh, “Robust Global Optimization of Electromagnetic Devices With Uncertain Design Parameters: Comparison of the Worst Case Optimization Methods and Multiobjective Optimization Approach Using Gradient Index Magnetics”, IEEE Transactions, no. 49, pp. 851-859, 2013.
dc.relation.references26. A. Rankovicґ, “Novel multi-objective optimization method of electric and magnetic field emissions from double-circuit overhead power line”, Int. Trans. Electr. Energy Syst., 27, p. 2243, 2017.
dc.relation.references27. M. Ummels, Stochastic Multiplayer Games Theory and Algorithms. Amsterdam: Amsterdam University Press, 2010.
dc.relation.references28. V. Yu. Rozov, S. Yu. Reutskyi, and O. Yu. Pyliugina, “The method of calculation of the magnetic field of three-phase power lines”, Tekhnichna Elektrodynamika, no. 5, pp. 11–13, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2014.
dc.relation.references29. V. V. Panchenko, A. S. Maslii, D. P. Pomazan, and S. G. Buriakovskyi, “Determination of factors of pulsations of the system of suppression of interfering harmonics of a semiconductor converter”, Electrical Engineering & Electromechanics, vol. 3, pp. 35–40, 2018.
dc.relation.references30. S. Buriakovskyi, An. Masliy, and Ar. Masliy, “Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor”, Eastern-European Journal of Enterprise Technologies, vol. 82, no. 4/1, pp. 32–41, 2016.
dc.relation.references31. M. Zagirnyak, O. Chornyi, V. Nykyforov, O. Sakun, and K. Panchenko, “Experimental research of electromechanical and biological systems compatibility [Badania eksperymentalne kompatybilności systemów elektromechanicznych i biologicznych]”, Przeglad Elektrotechniczny, 92(1), pp. 128–131, 2016.
dc.relation.references32. S. G. Buriakovskyi, A. S. Maslii, V. V. Panchenko, D. P. Pomazan, and I. V. Denis, “The research of the operation modes of the locomotive CHME3 on the imitation model”, Electrical Engineering & Electromechanics, vol. 3, pp. 59–62, 2018.
dc.relation.references33. V. Rozov and V. Grinchenko,,“Simulation and analysis of power frequency electromagnetic field in buildings closed to overhead lines”, in Proc. IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), May 29-June 2, pp. 500–503, Kyiv, Ukraine, 2017.
dc.relation.references34. M. Zagirnyak, S. Serhiienko, and O. Chornyi. “Innovative technologies in laboratory workshop for students of technical specialties”, Proceedings of 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering (UKRCON-2017), May 29 – June 2, pp. 1216-1220, Kyiv, Ukraine, 2017.
dc.relation.references35. P. Chystiakov, O. Chornyi, B. Zhautikov, G. Sivyakova. “Remote control of electromechanical systems based on computer simulators”, Proceedings of 2017 IEEE International Conference on modern electrical and energy systems (MEES2017), pp. 364-367, Kremenchuk, M. Ostrohradskyi National University, 2017.
dc.relation.references36. N. Ostroverkhov, S. Korol, S. Buryan, and M. Pushkar. “Investigation the Maximal Values of Flux and Stator Current of Autonomous Induction Generator”, Proc. IEEE Internat. Conference First Ukraine Conference on Electrical and Computer Engineering (UKRCON-2017), May 29 – June 2, pp. 560-563, Kyiv, Ukraine, 2017.
dc.relation.references37. V. Ya. Galchenko and A. N. Yakimov, “A turmitobionic method for the solution of magnetic defectometry problems in structural-parametric optimization formulation”, Russian Journal of Nondestructive Testing, vol. 50, Issue 2, pp. 59–71, 2014.
dc.relation.references38. M. Clerc, Particle Swarm Optimization. London: ISTE Ltd, 2006.
dc.relation.references39. Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009.
dc.relation.references40. X. Hu, R. C. Eberhart, and Y. Shi, “Particle Swarm with Extended Memory for Multiobejctive Optimization”, In Proceedings of the IEEE Swarm Intelligence Symposium, pp. 193–197, 2003.
dc.relation.references41. Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms for Constrained Parameter Optimization Problems”, Evolutionary Computation, no.4 (1), pp. 1–32, 1996.
dc.relation.references42. K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization Method for Constrained Optimization Problems”, In Proceedings of the Euro-International Symposium on Computational Intelligence. pp. 174–181, 2002.
dc.relation.references43. G. T. Pulido and C. A. Coello Coello, “A Constraint-Handling Mechanism for Particle Swarm Optimization”, in Proc. Congress on Evolutionary Computation, pp. 137–143, 2004.
dc.relation.references44. T. Ray and K. M. Liew, “A swarm metaphor for multiobjective design optimization”, Engineering Optimization, pp. 141–153, vol. 34, no. 2, 2002.
dc.relation.references45. M. Reyes-Sierra and C. A. Coello Coello, “MultiObjective Particle Swarm Optimizers A Survey of the State-of-the-Art”, In International Journal of Computational Intelligence Research, pp. 287–308, 2(3), 2006.
dc.relation.references46. A.I.F. Vaz and E.M.G.P. Fernandes, “Optimization of Nonlinear Constrained Particle Swarm In Technological and economic development of economy Baltic Journal on Sustainability”, 12(1), pp. 30–36, Vilnius: Technika, 2006.
dc.relation.references47. Eckart Zilzter, “Evolutionary algorithms for multiobjective optimizations: methods and applications”, Ph. D. Thesis, Swiss Federal Institute of Technology. Zurich, 1999.
dc.relation.references48. V. Ya. Gal’chenko, A. N. Yakimov, and D. L. Ostapushchenko, “Pareto-optimal parametric synthesis of axisymmetric magnetic systems with allowance for nonlinear properties of the ferromagnet”, Technical Physics, vol. 57, no. 7, pp. 893–899, 2012.
dc.relation.references49. B. I. Kuznetsov, T. B. Nikitina, M. O. Tatarchenko, and V. V. Khomenko, “Multicriterion anisotropic regulators synthesis by multimass electromechanical systems” Tekhnichna elektrodynamika, no.4, pp. 105-107, 2014. (Rus).
dc.relation.references50. Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, and Mehmet Karamanoglu, “Swarm Intelligence and Bio-Inspired Computation: Theory and Applications”, Elsevier Inc., 2013.
dc.relation.references51. B. I. Kuznetsov, T. B. Nikitina, A. V. Voloshko, I. V. Bovdyj, E. V. Vinichenko, and B. B. Kobilyanskiy, “Experimental research of magnetic field sensors spatial arrangement influence on efficiency of closed loop of active screening system of magnetic field of power line” Electrical Engineering & Electromechanics, vol.1, pp. 16–20, 2017.
dc.relation.referencesen1. "Active Magnetic Shielding (Field Cancellation)", http://www.emfservices.com/afcs.html, April 09 2019.
dc.relation.referencesen2. S. Celozzi and F. Garzia, "Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization", IEE Proc. Sci. Meas. Technol., vol. 151, no. 1, pp. 2–7, Rome, Italy, 2004.
dc.relation.referencesen3. A. Shenkman, N. Sonkin, and V. Kamensky, "Active protection from electromagnetic field hazards of a high voltage power line", HAIT Journal of Science and Engineering, vol. 2, no. 2, pp. 254–265, 2005.
dc.relation.referencesen4. H. Beltran, V. Fuster, and M. García, "Magnetic field reduction screening system for a magnetic field source used in industrial applications", 9 Congreso Hispano Luso de Ingeniería Eléctrica (9CHLIE), rp. 84–99, Marbella (Málaga), 2005.
dc.relation.referencesen5. V. Yu. Rozov, V. S. Grinchenko, D. Ye. Pelevin, and K.V. Chunikhin, "Simulation of electromagnetic field in residential buildings located near overhead lines", Tekhnichna Elektrodynamika, no. 3, pp. 6–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016.
dc.relation.referencesen6. Juan Carlos Bravo-Rodriguez, Juan Carlos del-PinoLupez and Pedro Cruz-Romero, "A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems Energies", 1332, p. 12, 2019.
dc.relation.referencesen7. S. Celozzi Active compensation and partial shields for the power-frequency magnetic field reduction’, S. Celozzi, Proc. IEEE Int. Symp. On Electromagnetic Compatibility, Minneapolis, USA, 2002, Pp. 222–226.
dc.relation.referencesen8. V. Yu. Rozov, S. Yu. Reutskyi, D. Ye. Pelevin, and O. Yu Pyliugina, "The magnetic field of transmission lines and the methods of its mitigation to a safe level", Tekhnichna Elektrodynamika, no. 2, pp. 3–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2013
dc.relation.referencesen9. H. J. M. Brake, R. Huonker, and H. Rogalla, "New results in active noise compensation for magnetically shielded rooms", Meas. Sci. Technol., no. 4, pp. 1370–1375, 1993.
dc.relation.referencesen10. A. Schnabel, J. Voigt, M. Burghoff, and S. KnappeGruneberg, "Magnetic Shielding State of art, new magnetic shielding and active magnetic shielding for low noise applications", vol. 51, no. 5, pp. 137–142, Rome, Italy, 2003.
dc.relation.referencesen11. "The World Health Organization, "The International EMF Project"", http://www.who.int/peh-emf/project/en/, Feb 17, 2017.
dc.relation.referencesen12. Electrical installation regulations, 5th ed., The Ministry of Energy and Coal Mining of Ukraine, 2014.
dc.relation.referencesen13. P. Cruz Romero, C. Mitchell Izquierdo, and M. Payan Burgos, "Optimal split-phase configurations", in Proc. 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), Volume 3, p. 5, Porto, Portugal, 10–13 September 2001.
dc.relation.referencesen14. P. Cruz Romero, C. Izquierdo, M. Burgos, L. F. Ferrer, F. Soto, C. L. Lanos, and J. D. Pacheco, "Magnetic field mitigation in power lines with passive and active loops", in Proc. CIGR Session, Paris, France, 25–30 August 2002.
dc.relation.referencesen15. S. Barsali, R. Giglioli, and D. Poli, "Active shielding of overhead line magnetic field: Design and applications", Electr. Power Syst. Res, 110, pp. 55–63, 2014.
dc.relation.referencesen16. J.C. del-Pino-Lupez and P. Cruz-Romero, "Influence of different types of magnetic shields on the thermal behavior and ampacity of underground power cables", IEEE Trans. Power Deliv., 26, pp. 2659–2667, 2011.
dc.relation.referencesen17. J. C. del-Pino-Lupez, P. Cruz-Romero, and L. Serrano-Iribarnegaray, "Impact of electromagnetic losses in closed two-component magnetic shields on the ampacity of underground power cables", Prog. Electromagn. Res., 135, pp. 601–625, 2013.
dc.relation.referencesen18. J. C. del-Pino-Lupez, L. Giaccone, A. Canova, P. Cruz-Romero, "Design of active loops for magnetic field mitigation in MV/LV substation surroundings", Electr. Power Syst. Res., 119, pp. 337–344, 2015.
dc.relation.referencesen19. J. C. del-Pino-Lupez, L. Giaccone, A. Canova, and P. Cruz-Romero, "Ga-based active loop optimization for magnetic field mitigation of MV/LV substations", IEEE Lat. Am. Trans., 12, pp. 1055–1061, 2014.
dc.relation.referencesen20. A. Canova and L. Giaccone, "Real-time optimization of active loops for the magnetic field minimization", Int. J. Appl. Electromagn. Mech.,56, pp. 97–106, 2018.
dc.relation.referencesen21. A. Canova, J. C. del Pino Lupez, L. Giaccone, and M. Manca, "Active shielding system for elf magnetic fields", IEEE Transaction on Magnetics, no. 3, pp. 51, 2015.
dc.relation.referencesen22. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of Perturb and Observe Maximum Power Point Tracking Method", IEEE Transactions on Power Electronics, no. 20(4), pp. 963–973, Jul, 2005.
dc.relation.referencesen23. B. Kuznetsov, A. Turenko, T. Nikitina, A. Voloshko, and V. Kolomiets, "Method of synthesis of closed-loop systems of active shielding magnetic field of power transmission lines", Tekhnichna Elektrodynamika, no. 4, pp. 8–10, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016.
dc.relation.referencesen24. B. I. Kuznetsov, T. B. Nikitina, A. V. Voloshko, I. V. Bovdyj, E.V. Vinichenko, and B. B. Kobilyanskiy, "Synthesis of an active shielding system of the magnetic field of power lines based on multiobjective optimization", Electrical Engineering & Electromechanics, vol. 6, pp. 26–30, 2016.
dc.relation.referencesen25. Z. Ren, M.-T. Pham, and C. S. Koh, "Robust Global Optimization of Electromagnetic Devices With Uncertain Design Parameters: Comparison of the Worst Case Optimization Methods and Multiobjective Optimization Approach Using Gradient Index Magnetics", IEEE Transactions, no. 49, pp. 851-859, 2013.
dc.relation.referencesen26. A. Rankovicg, "Novel multi-objective optimization method of electric and magnetic field emissions from double-circuit overhead power line", Int. Trans. Electr. Energy Syst., 27, p. 2243, 2017.
dc.relation.referencesen27. M. Ummels, Stochastic Multiplayer Games Theory and Algorithms. Amsterdam: Amsterdam University Press, 2010.
dc.relation.referencesen28. V. Yu. Rozov, S. Yu. Reutskyi, and O. Yu. Pyliugina, "The method of calculation of the magnetic field of three-phase power lines", Tekhnichna Elektrodynamika, no. 5, pp. 11–13, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2014.
dc.relation.referencesen29. V. V. Panchenko, A. S. Maslii, D. P. Pomazan, and S. G. Buriakovskyi, "Determination of factors of pulsations of the system of suppression of interfering harmonics of a semiconductor converter", Electrical Engineering & Electromechanics, vol. 3, pp. 35–40, 2018.
dc.relation.referencesen30. S. Buriakovskyi, An. Masliy, and Ar. Masliy, "Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor", Eastern-European Journal of Enterprise Technologies, vol. 82, no. 4/1, pp. 32–41, 2016.
dc.relation.referencesen31. M. Zagirnyak, O. Chornyi, V. Nykyforov, O. Sakun, and K. Panchenko, "Experimental research of electromechanical and biological systems compatibility [Badania eksperymentalne kompatybilności systemów elektromechanicznych i biologicznych]", Przeglad Elektrotechniczny, 92(1), pp. 128–131, 2016.
dc.relation.referencesen32. S. G. Buriakovskyi, A. S. Maslii, V. V. Panchenko, D. P. Pomazan, and I. V. Denis, "The research of the operation modes of the locomotive CHME3 on the imitation model", Electrical Engineering & Electromechanics, vol. 3, pp. 59–62, 2018.
dc.relation.referencesen33. V. Rozov and V. Grinchenko,,"Simulation and analysis of power frequency electromagnetic field in buildings closed to overhead lines", in Proc. IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), May 29-June 2, pp. 500–503, Kyiv, Ukraine, 2017.
dc.relation.referencesen34. M. Zagirnyak, S. Serhiienko, and O. Chornyi. "Innovative technologies in laboratory workshop for students of technical specialties", Proceedings of 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering (UKRCON-2017), May 29 – June 2, pp. 1216-1220, Kyiv, Ukraine, 2017.
dc.relation.referencesen35. P. Chystiakov, O. Chornyi, B. Zhautikov, G. Sivyakova. "Remote control of electromechanical systems based on computer simulators", Proceedings of 2017 IEEE International Conference on modern electrical and energy systems (MEES2017), pp. 364-367, Kremenchuk, M. Ostrohradskyi National University, 2017.
dc.relation.referencesen36. N. Ostroverkhov, S. Korol, S. Buryan, and M. Pushkar. "Investigation the Maximal Values of Flux and Stator Current of Autonomous Induction Generator", Proc. IEEE Internat. Conference First Ukraine Conference on Electrical and Computer Engineering (UKRCON-2017), May 29 – June 2, pp. 560-563, Kyiv, Ukraine, 2017.
dc.relation.referencesen37. V. Ya. Galchenko and A. N. Yakimov, "A turmitobionic method for the solution of magnetic defectometry problems in structural-parametric optimization formulation", Russian Journal of Nondestructive Testing, vol. 50, Issue 2, pp. 59–71, 2014.
dc.relation.referencesen38. M. Clerc, Particle Swarm Optimization. London: ISTE Ltd, 2006.
dc.relation.referencesen39. Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2009.
dc.relation.referencesen40. X. Hu, R. C. Eberhart, and Y. Shi, "Particle Swarm with Extended Memory for Multiobejctive Optimization", In Proceedings of the IEEE Swarm Intelligence Symposium, pp. 193–197, 2003.
dc.relation.referencesen41. Z. Michalewicz and M. Schoenauer, "Evolutionary Algorithms for Constrained Parameter Optimization Problems", Evolutionary Computation, no.4 (1), pp. 1–32, 1996.
dc.relation.referencesen42. K. E. Parsopoulos and M. N. Vrahatis, "Particle Swarm Optimization Method for Constrained Optimization Problems", In Proceedings of the Euro-International Symposium on Computational Intelligence. pp. 174–181, 2002.
dc.relation.referencesen43. G. T. Pulido and C. A. Coello Coello, "A Constraint-Handling Mechanism for Particle Swarm Optimization", in Proc. Congress on Evolutionary Computation, pp. 137–143, 2004.
dc.relation.referencesen44. T. Ray and K. M. Liew, "A swarm metaphor for multiobjective design optimization", Engineering Optimization, pp. 141–153, vol. 34, no. 2, 2002.
dc.relation.referencesen45. M. Reyes-Sierra and C. A. Coello Coello, "MultiObjective Particle Swarm Optimizers A Survey of the State-of-the-Art", In International Journal of Computational Intelligence Research, pp. 287–308, 2(3), 2006.
dc.relation.referencesen46. A.I.F. Vaz and E.M.G.P. Fernandes, "Optimization of Nonlinear Constrained Particle Swarm In Technological and economic development of economy Baltic Journal on Sustainability", 12(1), pp. 30–36, Vilnius: Technika, 2006.
dc.relation.referencesen47. Eckart Zilzter, "Evolutionary algorithms for multiobjective optimizations: methods and applications", Ph. D. Thesis, Swiss Federal Institute of Technology. Zurich, 1999.
dc.relation.referencesen48. V. Ya. Gal’chenko, A. N. Yakimov, and D. L. Ostapushchenko, "Pareto-optimal parametric synthesis of axisymmetric magnetic systems with allowance for nonlinear properties of the ferromagnet", Technical Physics, vol. 57, no. 7, pp. 893–899, 2012.
dc.relation.referencesen49. B. I. Kuznetsov, T. B. Nikitina, M. O. Tatarchenko, and V. V. Khomenko, "Multicriterion anisotropic regulators synthesis by multimass electromechanical systems" Tekhnichna elektrodynamika, no.4, pp. 105-107, 2014. (Rus).
dc.relation.referencesen50. Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, and Mehmet Karamanoglu, "Swarm Intelligence and Bio-Inspired Computation: Theory and Applications", Elsevier Inc., 2013.
dc.relation.referencesen51. B. I. Kuznetsov, T. B. Nikitina, A. V. Voloshko, I. V. Bovdyj, E. V. Vinichenko, and B. B. Kobilyanskiy, "Experimental research of magnetic field sensors spatial arrangement influence on efficiency of closed loop of active screening system of magnetic field of power line" Electrical Engineering & Electromechanics, vol.1, pp. 16–20, 2017.
dc.relation.urihttp://www.emfservices.com/afcs.html
dc.relation.urihttp://www.who.int/peh-emf/project/en/
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectoverhead power lines
dc.subjectpower-frequency magnetic field
dc.subjectrobust system of active shielding
dc.titleMitigation of magnetic field from overhead power lines with triangular conductor arrangements using active shielding systems
dc.title.alternativeЗниження магнітного поля повітряних леп із трикутним розташуванням проводів із використанням активного екранування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v9n1_Kuznetsov_B-Mitigation_of_magnetic_field_5-13.pdf
Size:
678.06 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v9n1_Kuznetsov_B-Mitigation_of_magnetic_field_5-13__COVER.png
Size:
551.79 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.16 KB
Format:
Plain Text
Description: